首页 | 本学科首页   官方微博 | 高级检索  
     


Binding interactions of antagonists with 5-hydroxytryptamine3A receptor models
Authors:Maksay Gábor  Bikádi Zsolt  Simonyi Miklós
Affiliation:Department of Molecular Pharmacology, Chemical Research Center, Hungarian Academy of Sciences, Budapest, Hungary.
Abstract:Homology modeling was performed on the N-terminal extracellular regions of human, mouse, and guinea pig 5-hydroxytryptamine type 3A receptors (5-HT3R) based on the 24% sequence homology with and on the crystal structure of the snail acetylcholine binding protein (AChBP). Docking of 5-HT3 antagonists granisetron, tropisetron, ondansetron, dolasetron ('setrons), and (+)-tubocurarine suggests an aromatic binding cleft behind a hydrophilic vestibule. Several intra- and interface interactions, H-bonds, and salt bridges stabilize the pentameric structure and the binding cleft. The planar rings of antagonists are intercalated between aromatic side-chains (W183-Y234, Y143-Y153). S227 donates H-bonds to the carbonyl groups of 'setrons. The tertiary ammonium ions interact with E236, N128 or E129, and/or W90 (cation-pi interaction). This offers a molecular explanation of the pharmacophore models of 5-HT3R antagonists. Docking artifacts suggest some ambiguities in the binding loops A and C of the 5-HT3AR models. Lower potencies of (+)-tubocurarine for human, and those of tropisetron for guinea pig 5-HT3ARs can be attributed to steric differences of I/S230 in the binding cleft and to distinct binding interactions with E229 and S227, respectively. Ligand binding interferes with crucial intra- and interface interactions along the binding cleft.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号