首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dissolved Nitrogen, Phosphorus, and Sulfur forms in the Ecosystem Fluxes of a Montane Forest in Ecuador
Authors:Rainer Goller  Wolfgang Wilcke  Katrin Fleischbein  Carlos Valarezo  Wolfgang Zech
Institution:(1) Institute of Soil Science and Soil Geography, University of Bayreuth, 95440 Bayreuth, Germany;(2) Geographic Institute, Johannes Gutenberg University of Mainz, 55099 Mainz, Germany;(3) Geo-ForschungsZentrum Potsdam (GFZ), Telegrafenberg, 14473 Potsdam, Germany;(4) Universidad Nacional de Loja, Area Agropecuaria y de Recursos Naturales Renovables, Programa de Agroforestería, Ciudadela Universitaria Guillermo Falconí, Loja, Ecuador
Abstract:The N, P, and S cycles in pristine forests are assumed to differ from those of anthropogenically impacted areas, but there are only a few studies to support this. Our objective was therefore to assess the controls of N, P, and S release, immobilization, and transport in a remote tropical montane forest. The study forest is located on steep slopes of the northern Andes in Ecuador. We determined the concentrations of NO3-N, NH4-N, dissolved organic N (DON), PO4-P, dissolved organic P (DOP), SO4-S, dissolved organic S (DOS), and dissolved organic C (DOC) in rainfall, throughfall, stemflow, lateral flow (in the organic layer), litter leachate, mineral soil solution, and stream water of three 8–13 ha catchments (1900–2200 m a.s.l.). The organic forms of N, P, and S contributed, on average, 55, 66, and 63% to the total N, P, and S concentrations in all ecosystem fluxes, respectively. The organic layer was the largest source of all N, P, and S species except for inorganic P and S. Most PO4 was released in the canopy by leaching and most SO4 in the mineral soil by weathering. The mineral soil was a sink for all studied compounds except for SO4. Consequently, concentrations of dissolved inorganic and organic N and P were as low in stream water (TDN: 0.34–0.39 mg N l−1, P not detectable) as in rainfall (TDN: 0.39–0.48 mg N l−1, P not detectable), whereas total S concentrations were elevated (stream water: 0.04–0.15, rainfall: 0.01–0.07 mg S l−1). Dissolved N, P, and S forms were positively correlated with pH at the scale of soil peda except inorganic S. Soil drying and rewetting promoted the release of dissolved inorganic N. High discharge levels following heavy rainstorms were associated with increased DOC, DON, NO3-N and partly also NH4-N concentrations in stream water. Nitrate-N concentrations in the stream water were positively correlated with stream discharge during the wetter period of the year. Our results demonstrate that the sources and sinks of N, P, and S were element-specific. More than half of the cycling N, P, and S was organic. Soil pH and moisture were important controls of N, P, and S solubility at the scale of individual soil peda whereas the flow regime influenced the export with stream water.
Keywords:Biogeochemical cycles  Dissolved nutrients  Dissolved organic matter  Ecosystem fluxes  Tropical montane forest  Water catchments
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号