首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biosynthesis and degradation of the endocannabinoid 2-arachidonoylglycerol
Authors:Ueda Natsuo  Tsuboi Kazuhito  Uyama Toru  Ohnishi Taira
Institution:Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa, Japan. nueda@med.kagawa-u.ac.jp
Abstract:2-Arachidonoylglycerol (2-AG) is a monoacylglycerol (MAG) molecule containing an esterified arachidonic acid chain at sn-2 position of the glycerol backbone. Together with structurally similar N-arachidonoylethanolamine (anandamide), 2-AG has been extensively studied as an endogenous ligand of cannabinoid receptors (an endocannabinoid) in brain and other mammalian tissues. Accumulating evidence demonstrates that the endocannabinoid system, including the central-type cannabinoid receptor CB1 and 2-AG, is responsible for synaptic retrograde signaling in the central nervous system. As 2-AG is rapidly formed from membrane phospholipids on cellular stimuli and degraded to arachidonic acid and glycerol, the enzymes catalyzing its biosynthesis and degradation are believed to play crucial roles in the regulation of its tissue levels. The major biosynthetic pathway appears to consist of sequential hydrolyses of inositol phospholipids via diacylglycerol (DAG) by β-type phospholipase C and DAG lipase, while MAG lipase is a principal enzyme in the degradation. In this short review, we will briefly outline rapid advances in enzymological research on the biosynthetic and degradative pathways of 2-AG.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号