首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ex situ bioremediation of pyrene contaminated soil in bio-slurry phase reactor operated in periodic discontinuous batch mode: Influence of bioaugmentation
Authors:S Venkata Mohan  D Prasanna  B Purushotham Reddy  PN Sarma  
Institution:aBioengineering and Environmental Centre, Indian Institute of Chemical Technology, Hyderabad 500 007, India
Abstract:Ex situ treatment of simulated pyrene-contaminated soil was studied in bio-slurry phase reactors operated in periodic discontinuous batch mode under anoxic–aerobic–anoxic–anoxic microenvironment. Experiments were performed in six different bio-slurry phase reactors (retention time of 120 h; soil loading rate of 20 kg soil/m3-day; operating temperature at 28±2 °C) by varying substrate concentration (substrate loading rate (SLR), 0.12, 0.24 and 0.36 g pyrene/kg soil-day) and bioaugmentation application (domestic sewage inoculum; CFU—2×106). The performance of slurry phase reactors was found to be dependent on the applied SLR and application of bioaugmentation (domestic sewage as augmented inoculum). Control reactor (killed control) showed only 6% of pyrene degradation while the non-augmented reactor showed an efficiency of 34% (substrate degradation rate (SDR)—0.0165 g pyrene/kg soil-day). In the case of augmented reactors, the system operated with low SLR showed a pyrene degradation efficiency of almost 90% (SDR—0.04 g pyrene/kg soil-day) and the reactor with high SLR showed 50% (SDR—0.025 g pyrene/kg soil-day) of pyrene degradation indicating the dependence of performance on the substrate concentration. Colony forming units (CFUs) variation was in good agreement with the performance of the reactors with respect to pyrene degradation. On the whole, pyrene degradation rate was greater in the augmented reactors compared to non-augmented reactors.
Keywords:Polycyclic aromatic hydrocarbons  Soil  Bio-slurry phase reactor  Bioaugmentation  Periodic discontinuous batch process  Colony forming units
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号