首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structure-related changes of the electron spin resonance spectra of the monomeric nitrosyl haemoglobin IV from Chironomus thummi thummi
Authors:M Christahl  K Gersonde
Institution:(1) Abteilung Physiologische Chemie, Rheinisch-WestfÄlische Technische Hochschule Aachen, Schneebergweg 213, D-5100 Aachen, Germany
Abstract:The monomeric haemoglobin IV from Chironomus thummi thummi (CTT IV) is an allosteric protein characterized by pH-dependent ligand affinities (Bohr-effect). The ligand-linked proton dissociation gives rise to a t rlhar r conformational transition. Furthermore, the Bohr-effect is ligand-dependent and decreases in magnitude following the order of ligands, O2 > CO > NO. Although the Bohr-effect for NO is smallest, the electron spin resonance (ESR) spectra of frozen solutions of 15NO-ligated CTT IV measured as higher derivatives at 77 K reflect this pH-dependent conformation change. g Tensor and hyperfine constants coinciding with the principal directions of the g tensor have been evaluated for 57Fe, 15NO, 14NE-imidazole, and 14N-pyrroles.Hyperfine parameters and g values of both conformation states of this haemoglobin, i.e., of the t state at low pH with low ligand affinity and of the r state at high pH with high ligand affinity, are characteristic for a hexacoordinated nitrosyl haem complex. The change in pH leads to a variation of the Fe-N-O bond angle which is larger at high pH (r conformation) than at low pH (t conformation). Furthermore, the spin transfer from NO into iron orbitals is larger at high pH than at low pH. These results are consistent with the assumption that the interaction of proximal imidazole and iron is smaller in the r conformation than in the t conformation.Binding of anionic detergents to nitrosyl CTT IV causes a conversion of the native (t, r) into a denatured (super-r) structure. The latter, on the basis of hyperfine and g values, apparently contains a pentacoordinated nitrosyl haem complex. Because of the extreme displacement of the proximal imidazole in the super-r structure, the Fe-N-O gouping is nearly linear and a large spin transfer from NO into iron orbitals occurs. Removal of anionic detergents from the protein leads to a full reconversion of the super-r into the native conformations.These structure-related changes of hyperfine constants and g tensor further support the assumption that the trans-effect of the proximal imidazole is an important link of allosteric interactions in haemoglobins.
Keywords:Monomeric Chironomus haemoglobin  Nitric oxide binding  Electron spin resonance  Hyperfine constants  Allostery
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号