首页 | 本学科首页   官方微博 | 高级检索  
     


Structural stability of polypeptide nanofilms under extreme conditions
Authors:Li Bingyun  Rozas Joshua  Haynie Donald T
Affiliation:Bionanosystems Engineering Laboratory, Center for Applied Physics Studies, Biomedical Engineering and Physics, P.O. Box 10348, Louisiana Tech University, Ruston, Louisiana 71272, USA.
Abstract:Self-assembly of designed peptides is a promising area of biomaterials research and development. Here, polypeptide nanofilms have been prepared by electrostatic layer-by-layer self-assembly (LBL) of cysteine (Cys)-containing 32mers designed to be oppositely charged at neutral pH, and structural stability of the films has been probed by subjecting them to various extreme physical and chemical conditions. The results suggest that although electrostatic attraction plays a key role in strengthening polypeptide films, stability is inversely related to absolute net charge of the supramolecular complex. This behavior is similar to the typical behavior of small globular proteins. Film structure is very stable in organic solvent and, when dehydrated, at extreme temperatures. Such stability is in marked contrast to the behavior of proteins, which tend to denature under comparable conditions. Similar to proteins, peptide nanofilms cross-linked by disulfide (S-S) bonds are considerably stronger than films stabilized by electrostatic, van der Waals, or hydrophobic interactions alone. This effect is particularly evident at extremes of pH and at elevated temperature when the film is hydrated. These results, the great variety of possible peptide structures, the inherent biocompatibility of l-amino acids, and current applications of thin films in commercial products together suggest that polypeptide films are promising for the development of new or enhanced products in food technology, drug delivery and medical device coatings, and biomaterials.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号