首页 | 本学科首页   官方微博 | 高级检索  
     


Heat shock reduces developmental competence and alters spindle configuration of bovine oocytes
Authors:Ju Jyh-Cherng  Jiang Shie  Tseng Jung-Kai  Parks John E  Yang Xiangzhong
Affiliation:Department of Animal Science and Center for Regenerative Biology, University of Connecticut U-4243, Storrs, CT 06269, USA.
Abstract:Heat shock may enhance the thermotolerance of, or cause detrimental effects on, a variety of cell types or organisms, depending on the duration and intensity of the thermal challenge. Experiments were designed to investigate the effect of heat shock on the developmental competence and cytoskeletal structures of bovine oocytes following IVF. In Experiment 1, bovine cumulus-oocyte complexes (COCs) were subjected to standard IVM culture conditions for 20 h and were then randomly allocated to groups for heat shock at 42 degrees C for 0 (control), 1, 2, or 4h. The oocytes were fertilized after heat shock and followed by culture in KSOM for 8d. There were no significant differences in cleavage rates, but blastocyst formation (27% versus 44%) and total cell number per blastocyst (82+/-21 versus 108+/-36; mean+/-S.D.) were lower in the 4-h heat shock group compared to the control (P<0.05). Trophectoderm, but not ICM, cell numbers were decreased (P<0.05) in the 4-h heat shock group compared to the control. Alterations in the meiotic spindle of IVM oocytes (n=120-126) were examined after 1 to 4-h of heat shock in Experiments 2 and 3. The metaphase spindle became elongated or aberrant and smaller following heat shock, compared to the non-heat shock oocytes (P<0.05). The basis for changes in spindle configuration and the differential decrease in trophectoderm cell numbers after heat shock are not clear, but may lead to reduced embryonic development and perhaps the low pregnancy rate of domestic animals during hot seasons.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号