首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Internalized Pseudomonas exotoxin A can exploit multiple pathways to reach the endoplasmic reticulum
Authors:Smith Daniel C  Spooner Robert A  Watson Peter D  Murray James L  Hodge Thomas W  Amessou Mohamed  Johannes Ludger  Lord J Michael  Roberts Lynne M
Institution:Molecular Cell Biology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
Abstract:Receptor-mediated internalization to the endoplasmic reticulum (ER) and subsequent retro-translocation to the cytosol are essential sequential processes required for the intoxication of mammalian cells by Pseudomonas exotoxin A (PEx). The toxin binds the alpha2-macroglobulin receptor/low-density lipoprotein receptor-related protein. Here, we show that in HeLa cells, PEx recruits a proportion of this receptor to detergent-resistant microdomains (DRMs). Uptake of receptor-bound PEx involves transport steps both directly from early endosomes to the trans-Golgi network (TGN) independently of Rab9 function and from late endosomes to the TGN in a Rab9-dependent manner. Furthermore, treatments that simultaneously perturb both Arf1-dependent and Rab6-dependent retrograde pathways show that PEx can use multiple routes to reach the ER. The Rab6-dependent route has only been described previously for cargo with lipid-sorting signals. These findings suggest that partial localization of PEx within DRM permits a choice of trafficking routes consistent with a model that DRM-associated toxins reach the ER on a lipid-dependent sorting pathway whilst non-DRM-associated PEx exploits the previously characterized KDEL receptor-mediated uptake pathway. Thus, unexpectedly, an ER-directed toxin with a proteinaceous receptor shows promiscuity in its intracellular trafficking pathways, exploiting routes controlled by both lipid- and protein-sorting signals.
Keywords:COP I-dependent                        endoplasmic reticulum                        Pseudomonas exotoxin                        Rab6                        Rab9                        retrograde pathways
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号