Assembly of turnip yellow mosaic virus replication complexes: interaction between the proteinase and polymerase domains of the replication proteins |
| |
Authors: | Jakubiec Anna Notaise Julien Tournier Vincent Héricourt François Block Maryse A Drugeon Gabrièle van Aelst Linda Jupin Isabelle |
| |
Affiliation: | Laboratoire de Virologie Moléculaire, Institut Jacques Monod, CNRS-Universités Paris 6-Paris 7, 2 Place Jussieu, 75251 Paris Cedex 05, France. |
| |
Abstract: | Turnip yellow mosaic virus (TYMV), a positive-strand RNA virus in the alphavirus-like supergroup, encodes two nonstructural replication proteins (140K and 66K), both of which are required for its RNA genome replication. The 140K protein contains domains indicative of methyltransferase, proteinase, and NTPase/helicase activities, while the 66K protein encompasses the RNA-dependent RNA polymerase domain. Recruitment of the 66K protein to the sites of viral replication, located at the periphery of chloroplasts, is dependent upon the expression of the 140K protein. Using antibodies raised against the 140K and 66K proteins and confocal microscopy, we report the colocalization of the TYMV replication proteins at the periphery of chloroplasts in transfected or infected cells. The replication proteins cofractionated in functional replication complexes or with purified chloroplast envelope membranes prepared from infected plants. Using a two-hybrid system and coimmunoprecipitation experiments, we also provide evidence for a physical interaction of the TYMV replication proteins. In contrast to what has been found for other members of the alphavirus-like supergroup, the interaction domains were mapped to the proteinase domain of the 140K protein and to a large region encompassing the core polymerase domain within the 66K protein. Coexpression and colocalization experiments confirmed that the helicase domain of the 140K protein is unnecessary for the proper recruitment of the 66K protein to the chloroplast envelope, while the proteinase domain appears to be essential for that process. These results support a novel model for the interaction of TYMV replication proteins and suggest that viruses in the alphavirus-like supergroup may have selected different pathways to assemble their replication complexes. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|