首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Longitudinal Study of Escherichia coli O157:H7 in a Beef Cattle Feedlot and Role of High-Level Shedders in Hide Contamination
Authors:Terrance M Arthur  James E Keen  Joseph M Bosilevac  Dayna M Brichta-Harhay  Norasak Kalchayanand  Steven D Shackelford  Tommy L Wheeler  Xiangwu Nou  Mohammad Koohmaraie
Institution:U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933-0166,1. University of Nebraska—Lincoln, Department of Veterinary and Biomedical Sciences, Great Plains Veterinary Educational Center, Clay Center, Nebraska 689332.
Abstract:The objectives of the study described here were (i) to investigate the dynamics of Escherichia coli O157:H7 fecal and hide prevalence over a 9-month period in a feedlot setting and (ii) to determine how animals shedding E. coli O157:H7 at high levels affect the prevalence and levels of E. coli O157:H7 on the hides of other animals in the same pen. Cattle (n = 319) were distributed in 10 adjacent pens, and fecal and hide levels of E. coli O157:H7 were monitored. When the fecal pen prevalence exceeded 20%, the hide pen prevalence was usually (25 of 27 pens) greater than 80%. Sixteen of 19 (84.2%) supershedder (>104 CFU/g) pens had a fecal prevalence greater than 20%. Significant associations with hide and high-level hide (≥40 CFU/100 cm2) contamination were identified for (i) a fecal prevalence greater than 20%, (ii) the presence of one or more high-density shedders (≥200 CFU/g) in a pen, and (iii) the presence of one or more supershedders in a pen. The results presented here suggest that the E. coli O157:H7 fecal prevalence should be reduced below 20% and the levels of shedding should be kept below 200 CFU/g to minimize the contamination of cattle hides. Also, large and unpredictable fluctuations within and between pens in both fecal and hide prevalence of E. coli O157:H7 were detected and should be used as a guide when preharvest studies, particularly preharvest intervention studies, are designed.It is now well established that at the time of harvest, hides are the major source of Escherichia coli O157:H7 contamination on beef carcasses (1, 4, 22). Thus, reducing the levels of food-borne pathogens on cattle hides has been the focus of many pre- and postharvest research efforts. For postharvest applications, hide interventions (i.e., washing of hide-on carcasses with various antimicrobial agents) are direct approaches and have been shown to be efficacious for reducing hide and carcass contamination rates (2, 4, 5, 22).In the area of preharvest research, several approaches have been taken to reduce the prevalence of E. coli O157:H7 in feces of cattle presented for slaughter. These approaches include, among others, feeding cattle probiotics (dietary administration of beneficial bacteria to compete with E. coli O157:H7), vaccination, and bacteriophage treatment (8, 24, 30). These intervention approaches are indirect. By reducing the fecal pathogen load, the pathogen prevalence and the level on hides are reduced through lower cross-contamination at the feedlot, and subsequently, carcass contamination rates decrease. While the effectiveness of preharvest interventions varies, no preharvest intervention is 100% effective in reducing the fecal prevalence of E. coli O157:H7. It is not known what level of pathogen reduction in feces would be necessary to significantly reduce hide and carcass contamination during processing. Key pieces of information needed to address this question are the number of shedding cattle in a pen needed to contaminate the hides of most of the cattle in the same pen and at what level the shedding cattle are contaminated.Aside from the number of cattle shedding a pathogen, the concentration of the pathogen in feces plays a pivotal role in spreading the pathogen between animals. Recently, cattle shedding E. coli O157:H7 at levels of >104 CFU/g (“supershedders”) have been associated with high rates of transmission of the pathogen between cohort animals (18, 23). Matthews et al. reported that 20% of the E. coli O157:H7 infections in cattle on Scottish farms were responsible for 80% of the transmission of the organism between animals (18). Another study reported similar findings; 9% of the animals shedding E. coli O157:H7 produced over 96% of the total E. coli O157:H7 fecal load for the group (23). While a number of studies have indicated the importance of supershedders in fecal transmission dynamics, there is a general lack of information concerning the effects of high shedding rates on hide prevalence and load. Accordingly, the objectives of this study were (i) to investigate the dynamics of E. coli O157:H7 prevalence and levels in feces and on hides of feedlot cattle over time and (ii) to determine how pathogen prevalence and levels on hides in a pen are affected by individuals shedding E. coli O157:H7 at high levels.In the analysis presented here, fecal shedding was analyzed using the following three categories based on the level of E. coli O157:H7 being shed: shedding positive (presumed concentration, ≥1 CFU/g), high-density shedder (≥200 CFU/g), and supershedder (≥104 CFU/g). Several definitions of E. coli O157:H7 supershedders have been offered previously. One-time shedding levels of >103 or >104 CFU/g have been used in multiple studies (17, 23, 24), while other groups have required persistent colonization of the rectoanal junction, as well as high cell counts, for an animal to qualify as a supershedder (10). Recently, Chase-Topping et al. (9) reviewed the requirements for supershedder status and provided a working definition: an animal that excretes >104 CFU/g. In doing this, Chase-Topping et al. noted the high stringency of this definition and acknowledged that with such a definition some supershedders will be missed if they are sampled at times other than peak shedding times (9). In the current study, this was a concern. In an attempt to investigate the link between high-shedding-level animals and hide contamination, greater leeway was needed in the classification. When it is sampled on a monthly basis, an animal shedding at high levels can have a large impact on the hide status of pen cohorts between sampling intervals but not be shedding at peak levels on the day of sample collection. Hence, the categories described above were selected to analyze the relationship between fecal shedding and hide contamination.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号