首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanism of Vaccinia Virus Release and Its Specific Inhibition by N1-Isonicotinoyl-N2-3-Methyl-4- Chlorobenzoylhydrazine
Authors:Lendon G Payne and  Krister Kristenson
Institution:1Department of Virology, School of Medicine, Karolinska Institute, SBL, S-105 21 Stockholm, Sweden;2Laboratory of Neuropathology, Department of Pathology II, Regionsjukhuset, Linköping, Sweden
Abstract:The release of vaccinia virus from RK-13 cells and its specific inhibition by N(1)-isonicotinoyl-N(2)-3-methyl-4- chlorobenzoylhydrazine (IMCBH) was studied. Intracellular naked vaccinia virus (INV) was wrapped by intracytoplasmic membranes, forming an intracellular double-membraned virion. Wrapped virions migrated to the cell surface, where the outer virion membrane presumably fused with the plasma membrane, releasing virus surrounded by the inner membrane, referred to as extracellular enveloped vaccinia virus (EEV). At no time was there any evidence that vaccinia virus acquired an envelope by budding of naked virus from the cytoplasmic membrane. Naked virus and double-membraned virus each constituted about one-third of intracellular virus at 8 and 12 h postinfection (p.i.). Beginning at 16 h p.i., the proportion of intracellular virus occurring as double-membraned virus steadily decreased to 1% at 24 h while the proportion of naked virus rose to 87%. IMCBH inhibited the formation of the double-membraned virion and the appearance of EEV while not affecting the production of INV. IMCBH had no effect on INV infectivity or polypeptide composition, on vaccinia virus-specified membrane-associated proteins or glycoproteins, or on hemadsorption. The presence of IMCBH until 4 h p.i. did not decrease the amount of EEV at 48 h p.i., whereas less than 10% of the normal 48-h EEV yield was obtained if the drug was present during the first 16 h p.i. Cell cultures infected at very low multiplicities showed a rapid virus dissemination in the absence of the drug, whereas the presence of IMCBH very effectively inhibited this spread. We conclude that vaccinia virus is liberated via a double-membraned intermediate as an enveloped virion and that it is this extracellular enveloped virus that is responsible for dissemination of infection.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号