首页 | 本学科首页   官方微博 | 高级检索  
     


Structural and dynamics characterization of norovirus protease
Authors:Daisuke Takahashi  Yasuaki Hiromasa  Yunjeong Kim  Asokan Anbanandam  Xiaolan Yao  Kyeong‐Ok Chang  Om Prakash
Affiliation:1. Department of Biochemistry, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506;2. Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506;3. Del Shankel Structural Biology Center, The University of Kansas, Lawrence, Kansas 66047;4. School of Biological Science, University of Missouri‐Kansas City, Kansas City, Missouri 64110
Abstract:Norovirus protease is an essential enzyme for proteolytic maturation of norovirus nonstructural proteins and has been implicated as a potential target for antiviral drug development. Although X‐ray structural studies of the protease give us wealth of structural information including interactions of the protease with its substrate and dimeric overall structure, the role of protein dynamics in the substrate recognition and the biological relevance of the protease dimer remain unclear. Here we determined the solution NMR structure of the 3C‐like protease from Norwalk virus (NV 3CLpro), a prototype strain of norovirus, and analyzed its backbone dynamics and hydrodynamic behavior in solution. 15N spin relaxation and analytical ultracentrifugation analyses demonstrate that NV 3CLpro is predominantly a monomer in solution. Solution structure of NV 3CLpro shows significant structural variation in C‐terminal domain compared with crystal structures and among lower energy structure ensembles. Also, 15N spin relaxation and Carr–Purcell–Meiboom–Gill (CPMG)‐based relaxation dispersion analyses reveal the dynamic properties of residues in the C‐terminal domain over a wide range of timescales. In particular, the long loop spanning residues T123–G133 show fast motion (ps‐ns), and the residues in the bII–cII region forming the large hydrophobic pocket (S2 site) undergo conformational exchanges on slower timescales (μs–ms), suggesting their important role in substrate recognition.
Keywords:norovirus  viral protease  protein dynamics  NMR spectroscopy  relaxation dispersion  analytical ultracentrifugation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号