首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of human paraoxonase 1 variants suggest that His residues at 115 and 134 positions are not always needed for the lactonase/arylesterase activities of the enzyme
Authors:Priyanka Bajaj  Rajan K. Tripathy  Geetika Aggarwal  Abhay H. Pande
Affiliation:Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), , Punjab, India
Abstract:Human paraoxonase 1 (h‐PON1) hydrolyzes variety of substrates and the hydrolytic activities of enzyme can be broadly grouped into three categories; arylesterase, phosphotriesterase, and lactonase. Current models of the catalytic mechanism of h‐PON1 suggest that catalytic residues H115 and H134 mediate the lactonase and arylesterase activities of the enzyme. H‐PON1 is a strong candidate for the development of catalytic bioscavenger for organophosphate poisoning in humans. Recently, Gupta et al. (Nat. Chem. Biol. 2011. 7, 120) identified amino acid substitutions that significantly increased the activity of chimeric‐PON1 variant (4E9) against some organophosphate nerve agents. In this study we have examined the effect of these (L69G/S111T/H115W/H134R/R192K/F222S/T332S) and other substitutions (H115W/H134R and H115W/H134R/R192K) on the hydrolytic activities of recombinant h‐PON1 (rh‐PON1) variants. Our results show that the substitutions resulted in a significant increase in the organophosphatase activity of all the three variants of rh‐PON1 enzyme while had a variable effect on the lactonase/arylesterase activities. The results suggest that H residues at positions 115 and 134 are not always needed for the lactonase/arylesterase activities of h‐PON1 and force a reconsideration of the current model(s) of the catalytic mechanism of h‐PON1.
Keywords:recombinant human PON1  site directed mutagenesis  acyl homoserine lactone  organophosphate
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号