The dynamics of camphor in the cytochrome P450 CYP101D2 |
| |
Authors: | Shabana Vohra Maria Musgaard Luet‐Lok Wong Weihong Zhou Philip C. Biggin |
| |
Affiliation: | 1. Structural Bioinformatics and Computational Biochemistry, University of Oxford, , Oxford, OX1 3QU United Kingdom;2. Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, , Oxford, OX1 3QR United Kingdom;3. College of Life Sciences, Nankai University, , Tianjin, 300071 China |
| |
Abstract: | The recent crystal structures of CYP101D2, a cytochrome P450 protein from the oligotrophic bacterium Novosphingobium aromaticivorans DSM12444 revealed that both the native (substrate‐free) and camphor‐soaked forms have open conformations. Furthermore, two other potential camphor‐binding sites were also identified from electron densities in the camphor‐soaked structure, one being located in the access channel and the other in a cavity on the surface near the F‐helix side of the F‐G loop termed the substrate recognition site. These latter sites may be key intermediate positions on the pathway for substrate access to or product egress from the active site. Here, we show via the use of unbiased atomistic molecular dynamics simulations that despite the open conformation of the native and camphor‐bound crystal structures, the underlying dynamics of CYP101D2 appear to be very similar to other CYP proteins. Simulations of the native structure demonstrated that the protein is capable of sampling many different conformational substates. At the same time, simulations with the camphor positioned at various locations within the access channel or recognition site show that movement towards the active site or towards bulk solvent can readily occur on a short timescale, thus confirming many previously reported in silico studies using steered molecular dynamics. The simulations also demonstrate how the fluctuations of an aromatic gate appear to control access to the active site. Finally, comparison of camphor‐bound simulations with the native simulations suggests that the fluctuations can be of similar level and thus are more representative of the conformational selection model rather than induced fit. |
| |
Keywords: | CYP101D2 atomistic molecular dynamics conformational selection |
|
|