首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Myosin lever disposition during length oscillations when power stroke tilting is reduced
Authors:Griffiths P J  Bagni M A  Colombini B  Amenitsch H  Bernstorff S  Ashley C C  Cecchi G
Institution:University Laboratory of Physiology, Oxford University, United Kingdom.
Abstract:M3 reflection intensity (IM3) from tetanized, intact skeletal muscle fiber bundles was measured during sinusoidal length oscillations at 2.8 kHz, a frequency at which the myosin motor’s power stroke is greatly reduced. IM3 signals were approximately sinusoidal, but showed a "double peak" distortion previously observed only at lower oscillation frequencies. A tilting lever arm model simulated this distortion, where IM3 was calculated from the molecular structure of myosin subfragment 1 (S1). Simulations showed an isometric lever arm disposition close to normal to the filament axis at isometric tension, similar to that found using lower oscillation frequencies, where the power stroke contributes more toward total S1 movement. Inclusion of a second detached S1 in each actin-bound myosin dimer increased simulated IM3 signal amplitude and improved agreement with the experimental data. The best agreement was obtained when detached heads have a fixed orientation, insensitive to length changes, and similar to that of attached heads at tetanus plateau. This configuration also accounts for the variations in relative intensity of the two main peaks of the M3 reflection substructure after a length change. This evidence of an IM3 signal distortion when power stroke tilting is suppressed, provided that a large enough amplitude of length oscillation is used, is consistent with the tilting lever arm model of the power stroke. skeletal muscle; X-ray diffraction; muscle mechanics; molecular motors; subfragment 1 structure
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology》浏览原始摘要信息
点击此处可从《American journal of physiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号