首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phosphoenolpyruvate metabolism in Jerusalem artichoke mitochondria
Authors:Lidia de Bari  Daniela Valenti  Roberto Pizzuto  Salvatore Passarella
Institution:a Istituto di Biomembrane e Bioenergetica, CNR, Via G. Amendola 165/A, 70126, Bari, Italy
b Dipartimento di Scienze della Salute, Università del Molise, Via De Sanctis, 86100, Campobasso, Italy
Abstract:We report here initial studies on phosphoenolpyruvate metabolism in coupled mitochondria isolated from Jerusalem artichoke tubers. It was found that:
(1)
phosphoenolpyruvate can be metabolized by Jerusalem artichoke mitochondria by virtue of the presence of the mitochondrial pyruvate kinase, shown both immunologically and functionally, located in the inner mitochondrial compartments and distinct from the cytosolic pyruvate kinase as shown by the different pH and inhibition profiles.
(2)
Jerusalem artichoke mitochondria can take up externally added phosphoenolpyruvate in a proton compensated manner, in a carrier-mediated process which was investigated by measuring fluorimetrically the oxidation of intramitochondrial pyridine nucleotide which occurs as a result of phosphoenolpyruvate uptake and alternative oxidase activation.
(3)
The addition of phosphoenolpyruvate causes pyruvate and ATP production, as monitored via HPLC, with their efflux into the extramitochondrial phase investigated fluorimetrically. Such an efflux occurs via the putative phosphoenolpyruvate/pyruvate and phosphoenolpyruvate/ATP antiporters, which differ from each other and from the pyruvate and the adenine nucleotide carriers, in the light of the different sensitivity to non-penetrant compounds. These carriers were shown to regulate the rate of efflux of both pyruvate and ATP. The appearance of citrate and oxaloacetate outside mitochondria was also found as a result of phosphoenolpyruvate addition.
Keywords:ADK  adenylate kinase  AOX  alternative oxidase  ALA  alanine  Ap5A  P1  P5-di(adenosine-5&prime  )pentaphosphate  ARS  arsenite  ATP D  S    ATP detecting system  BEMA  benzylmalonate  BF  bathophenthroline  BSA  bovine serum albumin  BTA  benzentricarboxylic acid  BUMA  butylmalonate  CF  cytosolic fraction  CAT  carboxyatractyloside  CN&minus    potassium cyanide  COX  cytochrome oxidase  α-CCN&minus    α-cyano-4-hydroxycinnamate  DPI  diphenyleneiodonium chloride  G6PDH  glucose-6-phosphate dehydrogenase  FCCP  carbonyl cyanide 4-trifluoromethoxyphenylhydrazone  G6PDH  glucose-6-phosphate dehydrogenase  HK  hexokinase  JAM  Jerusalem artichoke mitochondria  L-LDH  L-lactate dehydrogenase  ME  malic enzyme  OLIGO  oligomycin  OXA  oxalate  OAA  oxaloacetate  P  D  S    pyruvate detecting system  PEP  phosphoenolpyruvate  PEPC  phosphoenolpyruvate carboxylase  PhePYR  phenylpyruvate  Propyl-GALL  propyl gallate  PK  pyruvate kinase  ROT  rotenone  SD  standard deviation  SHAM  salicylhydroxamic acid  TX-100  Triton X-100  TX-JAM  JAM solubilized with TX-100
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号