首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of nucleic acid compounds on viability and cell composition of Bdellovibrio bacteriovorus during starvation
Authors:R B Hespell  M Mertens
Institution:(1) Microbiology Division, Department of Dairy Science, University of Illinois at Urbana-Champaign, 61801 Urbana, IL, U.S.A.
Abstract:The effects of various exogenous nucleic acid compounds on the viability and cell composition of Bdellovibrio bacteriovorus starved in buffer were measured. In decreasing order of effectiveness, these compounds were found to decrease the rate of loss of viability and the loss of cell carbon, cell ribonculeic acid, and cell protein: glutamate > ribonucleoside monophosphates > ribonucleosides > deoxyribonucleoside monophosphates. Similar sparing effects were not observed with nucleic acid bases, deoxyribonucleosides, ribose, ribose-5-phosphate, deoxyribose, and deoxyribose-5-phosphate. Appreciable increases in the respiration rate over the endogenous rate did not occur when cell suspensions were incubated with individual or mixtures of nucleic acid compounds. Formation of 14CO2 by cell suspensions incubated with carbon 14-labeled nucleic acid compounds indicated ribonucleosides and ribonucleoside monophosphates were respired and to a small extent, were incorporated into cell material of non-growing cells. The respired 14CO2 was derived mainly from the ribose portion of these molecules. No respired 14CO2 or incorporated carbon 14 was found with bdellovibrios incubated with other nucleic acid compounds tested, including free ribose. During growth of B. bacteriovorus on Escherichia coli in the presence of exogenous UL-14C-ribonucleoside monophosphates, 10–16% of the radioactivity was in the respired CO2 and of the radioactivity incorporated into the bdellovibrios, only 40 to 50% resided in the cell nucleic acids. However, during growth on 14C-adenine,-uracil, or-thymidine labeled E. coli, only trace amounts of 14CO2 were found and 90% or more of the incorporated radioactivity was in the bdellovibrio nucleic acids. It is concluded that bdellovibrio can use ribonucleoside monophosphates during growth and starvation as biosynthetic precursors for synthesis of both nucleic acids and other cell materials as well as catabolizing the ribose portion for energy purposes.Abbreviations HM buffer 5 mM N-2-hydroxyethyl-piperazine-Nprime-2-ethanesulfonic acid (pH 7.6) containing 0.1 mM CaCl2 and MgCl2 - DNA deoxyribonucleic acid - RNA ribonucleic acid - Ar, Cr, Gr, Ur ribonucleosides of adenine, cytosine, guanine, uracil, respectively - dTr deoxythymidine - AMP, CMP, GMP, UMP ribonucleoside monophosphates of adenine, cytosine, guanine, and uracil, respectively - dTMP deoxythymidine monophosphate - ATP adenosine triphosphate - PFU plaque-forming units
Keywords:Bdellovibrio bacteriovorus  Starvation effects  Viability loss  Nucleotide metabolism  Ribose degradation  Substrate respiration
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号