首页 | 本学科首页   官方微博 | 高级检索  
   检索      


K(+)-dependent composite gating of the yeast K(+) channel, Tok1
Authors:Loukin S H  Saimi Y
Institution:Laboratory of Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706 USA. shloukin@facstaff.wisc.edu
Abstract:TOK1 encodes an outwardly rectifying K(+) channel in the plasma membrane of the budding yeast Saccharomyces cerevisiae. It is capable of dwelling in two kinetically distinct impermeable states, a near-instantaneously activating R state and a set of related delayed activating C states (formerly called C(2) and C(1), respectively). Dwell in the R state is dependent on membrane potential and both internal and external K(+) in a manner consistent with the K(+) electrochemical potential being its determinant, where dwell in the C states is dependent on voltage and only external K(+). Whereas activation from the C states showed high temperature dependencies, typical of gating transitions in other Shaker-like channels, activation from the R state had a temperature dependence nearly as low as that of simple ionic diffusion. These findings lead us to conclude that although the C states reflect the activity of an internally oriented channel gate, the R state results from an intrinsic gating property of the channel filter region.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号