首页 | 本学科首页   官方微博 | 高级检索  
     


Induction of neutralizing antibodies and Th1-polarized and CD4-independent CD8+ T-cell responses following delivery of human immunodeficiency virus type 1 Tat protein by recombinant adenylate cyclase of Bordetella pertussis
Authors:Mascarell Laurent  Fayolle Catherine  Bauche Cécile  Ladant Daniel  Leclerc Claude
Affiliation:Unité de Biologie des Régulations Immunitaires, INSERM E 352, Institut Pasteur, Paris, France.
Abstract:HIV-Tat, a conserved protein playing a key role in the early life cycle of the human immunodeficiency virus (HIV) has been proposed as a potential AIDS vaccine. An HIV-Tat-based vaccine should elicit a broad, long-lasting, and neutralizing immune response. We have previously demonstrated that the adenylate cyclase (CyaA) from Bordetella pertussis targets dendritic cells and delivers CD8(+) and CD4(+) T-cell epitopes into the major histocompatibility complex class I and class II presentation pathways. We have also showed that CyaA induced specific and protective cytotoxic T cell responses in vivo. Here, we designed a prototype vaccine based on the HIV type 1 Tat delivered by CyaA (CyaA-E5-Tat) and tested its capacity to induce HIV-Tat-specific cellular as well as antibody responses. We showed that immunization of mice by CyaA-E5-Tat in the absence of adjuvant elicited strong and long-lasting neutralizing anti-Tat antibody responses more efficient than those obtained after immunization with Tat toxoid in aluminum hydroxide adjuvant. Analyses of the anti-Tat immunoglobulin G isotypes and the cytokine pattern showed that CyaA-E5-Tat induced a Th1-polarized immune response in contrast to the Th2-polarized immune responses obtained with the Tat toxoid. In addition, our data demonstrated that HIV-Tat-specific gamma interferon-producing CD8(+) T cells were generated after vaccination with CyaA-E5-Tat in a CD4(+) T-cell-independent manner. Based on these findings, CyaA-E5-Tat represents an attractive vaccine candidate for both preventive and therapeutic vaccination involving CyaA as an efficient nonreplicative vector for protein delivery.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号