首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ca(2+)-induced structural changes in rat m-calpain revealed by partial proteolysis
Authors:Moldoveanu T  Hosfield C M  Jia Z  Elce J S  Davies P L
Institution:Department of Biochemistry and the Protein Engineering Network of Centres of Excellence, Queen's University, Kingston, Ont. K7L 3N6, Canada.
Abstract:Partial proteolysis by exogenous proteases in the presence and absence of Ca(2+) was used to map the protease-resistant domains in m-calpain, and to obtain evidence for the conformational changes induced in this thiol protease by Ca(2+). The complication of autoproteolysis was avoided by using the inactive Cys105Ser calpain mutant. Both trypsin and chymotrypsin produced similar cleavage patterns from the large subunit (domains I-IV), while the small subunit (domain VI) was largely unaffected. N-Terminal sequencing of the major products showed that hydrolysis occurred in the N-terminal anchor peptide, which binds domain I to domain VI, at a site close to the C terminus of domain II, and at several sites within domain III. Of particular importance to the overall Ca(2+)-induced conformational changes was the increase in mobility and accessibility of domain III. The same sites were cleaved in the presence and absence of Ca(2+), but with one exception digestion was much more rapid in the presence of Ca(2+). The exception was a site close to residue 255 located within the active site cleft. This site was accessible to cleavage in the absence of Ca(2+), when the active site is not assembled, but was protected in the presence of Ca(2+). This result supports the hypothesis that Ca(2+) induces movement of domains I and II closer together to form the functional active site of calpain.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号