首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos
Authors:Noémie S Jelly  Paul Schellenbaum  Bernard Walter  Pascale Maillot
Institution:1. Laboratoire Vigne, Biotechnologies et Environnement, Universit?? de Haute-Alsace, 33 rue de Herrlisheim, 68008, Colmar, France
2. Institut de Biologie Mol??culaire et Cellulaire, UPR9022 CNRS, Universit?? de Strasbourg, 15 rue Ren?? Descartes, 67084, Strasbourg, France
Abstract:Grapevines are affected worldwide by viruses that compromise fruit yield and quality. Grapevine fanleaf virus (GFLV) causes fanleaf degeneration disease, a major threat to grapevine production. Transgenic approaches exploiting the RNA silencing machinery have proven suitable for engineering viral resistance in several crop species. However, the artificial microRNA (amiRNA)-based strategy has not yet been reported in grapevine. We developed two amiRNA precursors (pre-amiRNAs) targeting the coat protein (CP) gene of GFLV and characterised their functionality in grapevine somatic embryos. To create these pre-amiRNAs, natural pre-miR319a of Arabidopsis thaliana was modified by overlapping PCR in order to replace miR319a with two amiRNAs targeting different regions of the CP gene: amiRCP-1 or amiRCP-2. Transient expression of these two pre-amiRNA constructs was tested in grapevine somatic embryos after co-cultivation with Agrobacterium tumefaciens. Expression of amiRCP-1 and amiRCP-2 was detected in plant tissues by an endpoint stem-loop RT-PCR as early as 1?day after a 48-h co-cultivation, indicating active processing of pre-amiRNAs by the plant machinery. In parallel, GUS-sensor constructs (GCP-1 and GCP-2) were obtained by fusing the target sequence of amiRCP-1 or amiRCP-2 to the 3?? terminus of the GUS gene. Co-transformation assays with GUS-sensors and the pre-amiRNA constructs provided evidence for in vivo recognition and cleavage of the 21-nt target sequence of GUS-sensors by the corresponding amiRNA. This is the first report of amiRNA ectopic expression in grapevine. The constructs we developed could be useful for engineering GFLV-resistant grapes in the future.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号