首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Optimization of culture conditions for production of cellulases and xylanases by Scytalidium thermophilum using Response Surface Methodology
Authors:K Jatinder  BS Chadha  HS Saini
Institution:(1) Department of Microbiology, Guru Nanak Dev University, Amritsar, 143 005, India
Abstract:Summary Scytalidium thermophilum type culture Humicola insolens MTCC 4520 isolated from composting soil was optimized for production of cellulolytic and hemicellulolytic enzymes (endoglucanase, Avicel-adsorbable endoglucanase, FPase, β-glucosidase, xylanase and mannanase) by solid-state fermentation (SSF). Initial experiments showed that culture medium containing rice straw and wheat bran (1:3) as carbon source prepared in a synthetic basal medium supported maximal enzyme production at 45 °C. Further optimization of enzyme production was carried out using Box-Behnken design of experiments to study the influence of process variables (inoculum level, (NH4)2SO4 and pH) on enzyme production. The response surface plots revealed the conditions for obtaining optimal enzyme levels. The models computed for R 2 value ranged between 95% and 98.7% indicating they are appropriate and can be useful to predict the effect of inoculum level, (NH4)2SO4 and pH on enzyme production. Under optimized conditions 62.5 ± 0.50, 23.0 ± 0.58, 3.0 ± 0.50, 151.00 ± 8.194, 196 ± 5.033 and 4.9 ± 0.32 (units/g substrate) of endoglucanase (EG), Avicel-adsorbable endoglucanase (AAEG), FPase, β-glucosidase, xylanase and mannanase were produced, respectively. Isoelectric focusing (IEF) of the crude extract showed that S. thermophilum produced six different EG isoforms, of which the EG corresponding to pI values of 8.4, 7.9 and 6.5 showed affinity for Avicel, thereby indicating the presence of a cellulose-binding domain (CBD). Furthermore, seven isoforms of β-glucosidase and ten multiple forms of xylanase distributed over a wide range of pI were also detected.
Keywords:Avicel-adsorbable endoglucanase  β  -glucosidase  Box-Behnken design  endoglucanase  FPase  mannanase                  Scytalidium thermophilum  solid-state fermentation and xylanase
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号