首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Clusterin has chaperone-like activity similar to that of small heat shock proteins
Authors:Humphreys D T  Carver J A  Easterbrook-Smith S B  Wilson M R
Institution:Department of Biological Sciences, The University of Wollongong, Northfields Avenue, Wollongong, New South Wales 2522, Australia.
Abstract:Clusterin is a highly conserved protein which is expressed at increased levels by many cell types in response to a broad variety of stress conditions. A genuine physiological function for clusterin has not yet been established. The results presented here demonstrate for the first time that clusterin has chaperone-like activity. At physiological concentrations, clusterin potently protected glutathione S-transferase and catalase from heat-induced precipitation and alpha-lactalbumin and bovine serum albumin from precipitation induced by reduction with dithiothreitol. Enzyme-linked immunosorbent assay data showed that clusterin bound preferentially to heat-stressed glutathione S-transferase and to dithiothreitol-treated bovine serum albumin and alpha-lactalbumin. Size exclusion chromatography and SDS-polyacrylamide gel electrophoresis analyses showed that clusterin formed high molecular weight complexes (HMW) with all four proteins tested. Small heat shock proteins (sHSP) also act in this way to prevent protein precipitation and protect cells from heat and other stresses. The stoichiometric subunit molar ratios of clusterin:stressed protein during formation of HMW complexes (which for the four proteins tested ranged from 1.0:1.3 to 1.0:11) is less than the reported ratios for sHSP-mediated formation of HMW complexes (1.0:1.0 or greater), indicating that clusterin is a very efficient chaperone. Our results suggest that clusterin may play a sHSP-like role in cytoprotection.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号