首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Thermal acclimation of locomotor performance in tadpoles of the frog Limnodynastes peronii
Authors:R S Wilson  C E Franklin
Institution:(1) Department of Zoology, The University of Queensland, Brisbane QLD 4072, Australia e-mail: rwilson@zoology.uq.edu.au Fax: +61-7-3365-1655, AU
Abstract:Previous analyses of thermal acclimation of locomotor performance in amphibians have only examined the adult life history stage and indicate that the locomotor system is unable to undergo acclimatory changes to temperature. In this study, we examined the ability of tadpoles of the striped marsh frog (Limnodynastes peronii) to acclimate their locomotor system by exposing them to either 10 °C or 24 °C for 6 weeks and testing their burst swimming performance at 10, 24, and 34 °C. At the test temperature of 10 °C, maximum velocity (Umax) of the 10 °C-acclimated tadpoles was 47% greater and maximum acceleration (Amax) 53% greater than the 24 °C-acclimated animals. At 24 °C, Umax was 16% greater in the 10 °C-acclimation group, while there was no significant difference in Amax or the time taken to reach Umax (T-Umax). At 34 °C, there was no difference between the acclimation groups in either Umax or Amax, however T-Umax was 36% faster in the 24 °C-acclimation group. This is the first study to report an amphibian (larva or adult) possessing the capacity to compensate for cool temperatures by thermal acclimation of locomotor performance. To determine whether acclimation period affected the magnitude of the acclimatory response, we also acclimated tadpoles of L. peronii to 10 °C for 8 months and compared their swimming performance with tadpoles acclimated to 10 °C for 6 weeks. At the test temperatures of 24 °C and 34 °C, Umax and Amax were significantly slower in the tadpoles acclimated to 10 °C for 8 months. At 10 °C, T-Umax was 40% faster in the 8-month group, while there were no differences in either Umax or Amax. Although locomotor performance was enhanced at 10 °C by a longer acclimation period, this was at the expense of performance at higher temperatures. Accepted: 25 June 1999
Keywords:Locomotion  Temperature  Anuran  Swimming  Kinematics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号