首页 | 本学科首页   官方微博 | 高级检索  
     


Rapid suppression of activated Rac1 by cadherins and nectins during de novo cell-cell adhesion
Authors:Kitt Khameeka N  Nelson W James
Affiliation:Department of Biology, The James H. Clark Center, The Bio-X Program, Stanford University, Stanford, California, United States of America.
Abstract:Cell-cell adhesion in simple epithelia involves the engagement of E-cadherin and nectins, and the reorganization of the actin cytoskeleton and membrane dynamics by Rho GTPases, particularly Rac1. However, it remains unclear whether E-cadherin and nectins up-regulate, maintain or suppress Rac1 activity during cell-cell adhesion. Roles for Rho GTPases are complicated by cell spreading and integrin-based adhesions to the extracellular matrix that occur concurrently with cell-cell adhesion, and which also require Rho GTPases. Here, we designed a simple approach to examine Rac1 activity upon cell-cell adhesion by MDCK epithelial cells, without cell spreading or integrin-based adhesion. Upon initiation of cell-cell contact in 3-D cell aggregates, we observed an initial peak of Rac1 activity that rapidly decreased by ~66% within 5 minutes, and further decreased to a low baseline level after 30 minutes. Inhibition of E-cadherin engagement with DECMA-1 Fab fragments or competitive binding of soluble E-cadherin, or nectin2alpha extracellular domain completely inhibited Rac1 activity. These results indicate that cadherins and nectins cooperate to induce and then rapidly suppress Rac1 activity during initial cell-cell adhesion, which may be important in inhibiting the migratory cell phenotype and allowing the establishment of initially weak cell-cell adhesions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号