首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biochemical characterization of a paraquat-tolerant mutant of Escherichia coli
Authors:S M Kao  H M Hassan
Abstract:The biochemical basis for paraquat tolerance was investigated using one of the paraquat-resistant Escherichia coli mutants previously isolated. When grown in the absence of paraquat (PQ2+), the specific activities of glucose-6-phosphate dehydrogenase and NADPH:PQ2+-diaphorase, both required for the expression of PQ2+ toxicity, were comparable in the wild type and the mutant. However, growth in the presence of 1 mM PQ2+ resulted in greater induction of these two enzymes in the wild type than in the mutant. Nevertheless, when the mutant was grown in 50 mM PQ2+, the activities of these two enzymes were comparable to those of the wild type grown in the presence of 1 mM PQ2+. Measurement of cyanide-resistant respiration, an indication of intracellular superoxide generation, showed that the intracellular flux of superoxide mediated by subsaturating concentrations of paraquat was significantly lower in the mutant than in the wild type. Extracellular superoxide formation, as measured by superoxide dismutase-inhibitable cytochrome c reduction, was higher in the wild type than in the mutant whether grown in the absence or the presence of PQ2+. The mutant did not show cross-resistance toward juglone or plumbagin, compounds known to exacerbate superoxide generation. The kinetics of 14C]PQ2+ uptake showed that the wild type accumulated PQ2+ against a concentration gradient, whereas the mutant seemed to do so only by facilitated diffusion. The results indicate that the impaired paraquat uptake system in the mutant results in the physiological and biochemical differences observed between the wild type and mutant.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号