首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation of protonatable residues in Rhodothermus marinus caa 3 haem-copper oxygen reductase: comparison with Paracoccus denitrificans aa 3 haem-copper oxygen reductase
Authors:Clá  udio M. Soares, Antó  nio M. Baptista, Manuela M. Pereira  Miguel Teixeira
Affiliation:(1) Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, Av. da República, 2781-901 Oeiras, Portugal
Abstract:The Rhodothermus marinus caa 3 haem-copper oxygen reductase contains all the residues of the so-called D- and K-proton channels, with the notable exception of the helix VI glutamate residue (Glu278I in Paracoccus denitrificans aa 3), being nevertheless a true oxygen reductase reducing O2 to water, and an efficient proton pump. Instead, in the same helix, but one turn below, it has a tyrosine residue (Tyr256I, R. marinus caa 3 numbering), whose hydroxyl group occupies the same spatial position as the carboxylate group of Glu278I, as deduced by comparative modelling techniques. Therefore, we proposed previously that this tyrosine residue could play an important role in the proton pathway. In this article we further study this hypothesis, by investigating the equilibrium thermodynamics of protonation in R. marinus caa 3, using theoretical methodologies based on the structural model previously obtained. Control calculations are also performed for the P. denitrificans aa 3 oxygen reductase. In both oxygen reductases we find several residues that are proton active (i.e., that display partial protonation) at physiological pH, some of them being redox sensitive (i.e., sensitive to the protein redox state). However, the caa 3 Tyr256I is not proton active at physiological pH, in contrast to the aa 3 Glu278I which is both proton active at physiological pH and shows a high redox sensitivity. In R. marinus caa 3 we do not find any other residues in the same protein zone that can have this property. Therefore, there are no putative D-channel residues that are proton active in this oxidase. The protonatable residues of the K-channel are much more functionally conserved in both oxygen reductases than the same type of residues in the D-channel. Two (Tyr262I and Lys336I, caa 3 numbering) out of three protonatable K-channel residues are proton active and redox sensitive in both proteins.
Keywords:Continuum electrostatics  Cytochrome c oxidase  Molecular modelling  pK a calculations  Proton channels
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号