首页 | 本学科首页   官方微博 | 高级检索  
     


Digital image correlation and finite element modelling as a method to determine mechanical properties of human soft tissue in vivo
Authors:Kevin M. Moerman  Cathy A. Holt  Sam L. Evans  Ciaran K. Simms
Affiliation:1. School of Engineering and Architecture, Alma Mater Studiorum – Università di Bologna Via Terracini 28, 40131, Bologna Italy;2. Department of Mechanical Engineering, Universidad Carlos III de Madrid Avd. de la Universidad, 30. 28911 Leganés Madrid, Spain;3. Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum – Università di Bologna Viale Risorgimento 2, 40136 Bologna Italy
Abstract:The mechanical properties of human soft tissue are crucial for impact biomechanics, rehabilitation engineering, and surgical simulation. Validation of these constitutive models using human data remains challenging and often requires the use of non-invasive imaging and inverse finite element (FE) analysis. Post-processing data from imaging methods such as tagged magnetic resonance imaging (MRI) can be challenging. Digital image correlation (DIC), however, is a relatively straightforward imaging method. DIC has been used in the past to study the planar and superficial properties of soft tissue and excised soft tissue layers. However, DIC has not been used to non-invasive study of the bulk properties of human soft tissue in vivo. Thus, the goal of this study was to assess the use of DIC in combination with FE modelling to determine the bulk material properties of human soft tissue. Indentation experiments were performed on a silicone gel soft tissue phantom. A two camera DIC setup was then used to record the 3D surface deformation. The experiment was then simulated using a FE model. The gel was modelled as Neo-Hookean hyperelastic, and the material parameters were determined by minimising the error between the experimental and FE data. The iterative FE analysis determined material parameters (μ=1.80 kPa, K=2999 kPa) that were in close agreement with parameters derived independently from regression to uniaxial compression tests (μ=1.71 kPa, K=2857 kPa). Furthermore the FE model was capable of reproducing the experimental indentor force as well as the surface deformation found (R2=0.81). It was therefore concluded that a two camera DIC configuration combined with FE modelling can be used to determine the bulk mechanical properties of materials that can be represented using hyperelastic Neo-Hookean constitutive laws.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号