首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of power, pedal rate, and force on average muscle fiber conduction velocity during cycling.
Authors:Dario Farina  Andrea Macaluso  Richard A Ferguson  Giuseppe De Vito
Affiliation:Center for Sensory Motor Interaction, Aalborg University, Fredrik Bajers Vej 7 D-3, DK-9100 Aalborg, Denmark. df@hst.aau.dk
Abstract:Muscle fiber conduction velocity (MFCV) provides indications on motor unit recruitment strategies due to the relation between conduction velocity and fiber diameter. The aim of this study was to investigate MFCV of thigh muscles during cycling at varying power outputs, pedal rates, and external forces. Twelve healthy male participants aged between 19 and 30 yr cycled on an electronically braked ergometer at 45, 60, 90, and 120 rpm. For each pedal rate, subjects performed two exercise intensities, one at an external power output corresponding to the previously determined lactate threshold (100% LT) and the other at half of this power output (50% LT). Surface electromyogram signals were detected during cycling from vastus lateralis and medialis muscles with linear adhesive arrays of eight electrodes. In both muscles, MFCV was higher at 100% LT compared with 50% LT for all average pedal rates except 120 rpm (mean +/- SE, 4.98 +/- 0.19 vs. 4.49 +/- 0.18 m/s; P < 0.001). In all conditions, MFVC increased with increasing instantaneous knee angular speed (from 4.14 +/- 0.16 to 5.08 +/- 0.13 m/s in the range of instantaneous angular speeds investigated; P < 0.001). When MFCV was compared at the same external force production (i.e., 90 rpm/100% LT vs. 45 rpm/50% LT, and 120 rpm/100% LT vs. 60 rpm/50% LT), MFCV was higher at the faster pedal rate (5.02 +/- 0.17 vs. 4.64 +/- 0.12 m/s, and 4.92 +/- 0.19 vs. 4.49 +/- 0.11 m/s, respectively; P < 0.05) due to the increase in inertial power required to accelerate the limbs. It was concluded that, during repetitive dynamic movements, MFCV increases with the external force developed, instantaneous knee angular speed, and average pedal rate, indicating progressive recruitment of large, high conduction velocity motor units with increasing muscle force.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号