首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Commissural neurons of the electrosensory lateral line lobe of Apteronotus leptorhynchus: morphological and physiological characteristics
Authors:J Bastian  J Courtright  J Crawford
Institution:(1) Department of Zoology, University of Oklahoma, 73019 Norman, OK, USA;(2) Parmly Hearing Institute, Loyola University, 6525 North Sheridan Road, 60626 Chicago, IL, USA
Abstract:Extracellular injections of horseradish peroxidase were used to label commissural cells connecting the electrosensory lateral line lobes of the weakly electric fish Apteronotus leptorhynchus. Multiple commissural pathways exist; a caudal commissure is made up of ovoid cell axons, and polymorphic cells' axons project via a rostral commissure. Intracellular recording and labeling showed that ovoid cells discharge spontaneously at high rates, fire at preferred phases to the electric organ discharge, and respond to increased receptor afferent input with short latency partially adapting excitation. Ovoid cell axons ramify extensively in the rostro-caudal direction but are otherwise restricted to a single ELL subdivision. Polymorphic cells are also spontaneously active, but their firing is unrelated to the electric organ discharge waveform. They respond to increased receptor afferent activity with reduced firing frequency and response latency is long. Electrical stimulation of the commissural axons alters the behavior of pyramidal cells in the contralateral ELL. Basilar pyramidal cells are hyperpolarized and nonbasilar pyramidal cells are depolarized by this type of stimulation. The physiological results indicate that the ovoid cells participate in common mode rejection mechanisms and also suggest that the ELLs may function in a differential mode in which spatially restricted electrosensory stimuli can evoke heightened responses.Abbreviations ccELL caudal commissure of the ELL - CE contralaterally excited - DML dorsal molecular layer - ELL electrosensory lateral line lobe - EOD electric organ discharge - HRP horseradish peroxidase - IE ipsilaterally excited - MTI mouth-tail inverted - MTN mouth-tail normal - rcELL rostral commissure of the ELL - TRI transverse inverted - TRN transverse normal
Keywords:Electric fish  Electroreception  Commissural neurons  Common mode rejection  Sensory processing
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号