Abstract: | There is a large variation in caloric intake and macronutrient preference between individuals and between ethnic groups, and these food intake patterns show a strong heritability. The transition to new food sources during the agriculture revolution around 11,000 years ago probably created selective pressure and shaped the genome of modern humans. One major player in energy homeostasis is the appetite-stimulating hormone neuropeptide Y, in which the stimulatory capacity may be mediated by the neuropeptide Y receptors 1, 2 and 5 (NPY1R, NPY2R and NPY5R). We assess association between variants in the NPY1R, NPY2R and NPY5R genes and nutrient intake in a cross-sectional, single-center study of 400 men aged 40 to 80 years, and we examine whether genomic regions containing these genes show signatures of recent selection in 270 HapMap individuals (90 Africans, 90 Asians, and 90 Caucasians) and in 846 Dutch bloodbank controls. Our results show that derived alleles in NPY1R and NPY5R are associated with lower carbohydrate intake, mainly because of a lower consumption of mono- and disaccharides. We also show that carriers of these derived alleles, on average, consume meals with a lower glycemic index and glycemic load and have higher alcohol consumption. One of these variants shows the hallmark of recent selection in Europe. Our data suggest that lower carbohydrate intake, consuming meals with a low glycemic index and glycemic load, and/or higher alcohol consumption, gave a survival advantage in Europeans since the agricultural revolution. This advantage could lie in overall health benefits, because lower carbohydrate intake, consuming meals with a low GI and GL, and/or higher alcohol consumption, are known to be associated with a lower risk of chronic diseases. |