首页 | 本学科首页   官方微博 | 高级检索  
     


Naturally Occurring Hepatitis C Virus Subgenomic Deletion Mutants Replicate Efficiently in Huh-7 Cells and Are trans-Packaged In Vitro To Generate Infectious Defective Particles
Authors:Laura Pacini  Rita Graziani  Linda Bartholomew  Raffaele De Francesco  Giacomo Paonessa
Affiliation:Istituto di Ricerche di Biologia Molecolare P. Angeletti, Merck Research Laboratories, Via Pontina km 30,600, I-00040 Pomezia (Roma), Italy,1. Istituto Nazionale Genetica Molecolare, Via Francesco Sforza 28, I-20122 Milano, Italy2.
Abstract:Naturally occurring hepatitis C virus (HCV) subgenomic RNAs have been found in several HCV patients. These subgenomic deletion mutants, mostly lacking the genes encoding envelope glycoproteins, were found in both liver and serum, where their relatively high abundance suggests that they are capable of autonomous replication and can be packaged and secreted in viral particles, presumably harboring the envelope proteins from wild type virus coinfecting the same cell. We recapitulated some of these natural subgenomic deletions in the context of the isolate JFH-1 and confirmed these hypotheses in vitro. In Huh-7.5 cells, these deletion-containing genomes show robust replication and can be efficiently trans-packaged and infect naïve Huh-7.5 cells when cotransfected with the full-length wild-type J6/JFH genome. The genome structure of these natural subgenomic deletion mutants was dissected, and the maintenance of both core and NS2 regions was proven to be significant for efficient replication and trans-packaging. To further explore the requirements needed to achieve trans-complementation, we provided different combinations of structural proteins in trans. Optimal trans-complementation was obtained when fragments of the polyprotein encompassing core to p7 or E1 to NS2 were expressed. Finally, we generated a stable helper cell line, constitutively expressing the structural proteins from core to p7, which efficiently supports trans-complementation of a subgenomic deletion encompassing amino acids 284 to 732. This cell line can produce and be infected by defective particles, thus representing a powerful tool to investigate the life cycle and relevance of natural HCV subgenomic deletion mutants in vivo.Hepatitis C virus (HCV) is an enveloped virus belonging to the family Flaviviridae. The virus genome is a positive-stranded RNA of about 9,600 nucleotides, which contains a single open reading frame (ORF) encoding both structural (core, E1, E2, and p7) and nonstructural (NS2, NS3, NS4A, NS4B, NS5A, and NS5B) proteins (47). Two highly conserved untranslated regions (UTRs) are found at the 5′ and 3′ ends, which play critical roles in both viral translation and replication (13, 14, 23).HCV is estimated to infect 170 million people worldwide (1, 43) and in a high percentage of individuals causes a chronic liver infection that frequently evolves into an array of diseases, including cirrhosis (12, 15, 38) and hepatocellular carcinoma (4, 7, 17, 30, 38, 49).The HCV RNA-dependent RNA polymerase (NS5B) has a high frequency of incorrect nucleotide insertions, in the range of 10−4 to 10−5 base substitutions per site, which can result in the rapid generation of HCV quasispecies (37, 45). Because of this huge genetic diversity, HCV is currently classified into six major genotypes and more than 80 subtypes (44). Recombination may be another mechanism exploited by HCV to increase genetic diversity: naturally occurring intergenotypic recombinant viruses that often have their recombination points in the trans-membrane domains of NS2 were recently identified (20, 21, 26, 27, 33, 35).Recent publications have reported the presence of natural HCV subgenomic RNAs in serum and liver of infected patients, mostly containing large in-frame deletions from E1 up to NS2, always found together with the full-length wild-type (wt) RNAs (5, 16, 36, 54). These mutant viral genomes persist for a long time (at least 2 years), and sequence analysis suggests that subgenomic (the predominant species during this period) and full-length HCV evolve independently (54). The relative abundance and persistence of such subgenomic RNAs in vivo suggests that (i) they are capable of autonomous replication and (ii) they can be packaged and secreted in infectious viral particles, presumably harboring the envelope proteins from wt virus coinfecting the same cell.Analysis of the genetic structure of 18 independent subgenomic deletion-containing RNAs (5, 16, 36, 54) strongly suggests that the possibility of recombination and/or deletion is restricted to specific regions.As expected, the 5′ UTR, the 3′ UTR, and the region coding from NS3 to NS5B are always conserved, in line with the notion that these regions are the minimal requirements for RNA replication. In addition to the regions required for RNA replication, however, naturally occurring subgenomic HCV RNA invariably contains an intact core region and the protease domain of NS2. In fact, the 5′ deletion boundary falls between the codons for amino acid 189 of core and amino acid 4 of E1 in 33% of cases and between the codons for amino acids 21 and 29 of E1 in 39% of cases, such that in 72% of cases overall, the 5′ boundary is between the codons for amino acid 189 of core and amino acid 29 of E1 (see Fig. S1 in the supplemental material). Likewise, the 3′ boundary shows a distinct localization, occurring between the codons for amino acids 51 and 79 of NS2 in 56% of cases.In the present study, we modified the infectious isolate JFH-1 in order to recapitulate in vitro the genetic structure of two of the most representative in-frame natural subgenomic deletion-containing RNAs found circulating in patients (28, 51, 57). Using this system, we analyzed natural subgenomic variants for their ability to replicate autonomously and demonstrated that the natural subgenomic deletion mutants are replication competent and are trans-packaged into infectious virions when coexpressed together with wt virus. Furthermore, our data suggest that the presence of the NS2 protease domain is required in order to generate the correct NS3 N terminus, required for RNA replication. Unexpectedly, the presence of NS2 generates, in turn, a strict cis requirement for the core region in order to allow efficient trans-packaging of the subgenomic RNA, revealing a complex interplay between the NS2 and the core viral genes. Finally, we performed trans-complementation studies of the subgenomic deletions with different HCV structural proteins to gain insight into the minimal requirements for the assembly and release of HCV virions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号