首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mutational Analysis of the Herpes Simplex Virus Type 1 DNA Packaging Protein UL33
Authors:Frauke Beilstein  Martin R Higgs  Nigel D Stow
Institution:MRC Virology Unit, University of Glasgow, Church Street, Glasgow G11 5JR, United Kingdom
Abstract:The UL33 protein of herpes simplex virus type 1 (HSV-1) is thought to be a component of the terminase complex that mediates the cleavage and packaging of viral DNA. In this study we describe the generation and characterization of a series of 15 UL33 mutants containing insertions of five amino acids located randomly throughout the 130-residue protein. Of these mutants, seven were unable to complement the growth of the UL33-null virus dlUL33 in transient assays and also failed to support the cleavage and packaging of replicated amplicon DNA into capsids. The insertions in these mutants were clustered between residues 51 and 74 and between 104 and 116, within the most highly conserved regions of the protein. The ability of the mutants to interact with the UL28 component of the terminase was assessed in immunoprecipitation and immunofluorescence assays. All four mutants with insertions between amino acids 51 and 74 were impaired in this interaction, whereas two of the three mutants in the second region (with insertions at positions 111 and 116) were not affected. These data indicate that the ability of UL33 to interact with UL28 is probably necessary, but not sufficient, to support viral growth and DNA packaging.During the packaging of the double-stranded DNA genome of herpes simplex virus type 1 (HSV-1), the cleavage of replicated concatemeric viral DNA into single-genome lengths is tightly coupled to its insertion into preassembled spherical procapsids. Upon genome insertion, the internal scaffold protein of the procapsid is lost, and the capsid shell angularizes. Genetic analysis has revealed that successful packaging requires a cis-acting DNA sequence (the a sequence) together with seven proteins, encoded by the UL6, UL15, UL17, UL25, UL28, UL32, and UL33 genes (6, 10). By analogy with double-stranded bacteriophage, the encapsidation of HSV-1 DNA is thought to be mediated by a heteromultimeric terminase enzyme. It is envisaged that the terminase is involved in the recognition of packaging signals present in the concatemers and the association with procapsids via an interaction with the capsid portal protein. Terminase initiates packaging by cleaving at an a sequence present between adjacent genomes within concatemers and subsequently provides energy for genome insertion through the hydrolysis of ATP. Packaging is terminated by a second cleavage event at the next similarly orientated a sequence, resulting in the encapsidation of a unit-length genome.An accumulating body of evidence suggests that the HSV-1 terminase is comprised of the UL15, UL28, and UL33 gene products. Viruses lacking a functional version of any of these three proteins are unable to initiate DNA packaging, and uncleaved concatemers and abortive B-capsids (angularized forms containing scaffold but no DNA) accumulate in the nuclei of infected cells (2, 4, 5, 11, 25, 27, 30, 36, 38). Protein sequence comparisons revealed a distant relationship between UL15 and the large subunit of bacteriophage T4 terminase, gp17, including the presence of Walker A and B box motifs characteristic of ATP binding proteins (13). Subsequent experiments demonstrated that point mutations affecting several of the most highly conserved residues abolished the ability of the resulting mutant viruses to cleave and package viral DNA (26, 39). The UL28 component has been reported to interact with the viral DNA packaging signal (3), a property shared with the homologous protein of human cytomegalovirus (CMV), UL56 (9). Furthermore, both UL15 and UL28 are able to interact with UL6 (33, 37), which form a dodecameric portal complex through which DNA is inserted into the capsid (22, 23, 31). Within the terminase complex, strong interactions have previously been reported between UL15 and UL28 and between UL28 and UL33 (1, 7, 17, 19, 34). Evidence also suggests that UL15 and UL33 may be able to interact directly, albeit more weakly than UL28 and UL33 (7, 15). Temperature-sensitive (ts) lesions in UL33 or UL15 reduced both the interaction of the thermolabile protein with the other members of the terminase complex and viral growth at the nonpermissive temperature (36). Recent evidence suggests that the terminase complex assembles in the cytoplasm and is imported into the nucleus via a mechanism involving a nuclear localization signal within UL15 (35). UL15 is also necessary for the localization of the terminase to nuclear sites of DNA replication and packaging (15). At present, the enzymatic activities necessary for DNA packaging have not been demonstrated for either the complex or individual subunits of the HSV-1 terminase.This study concerns the UL33 protein, which, at 130 residues, is the smallest subunit of the presumptive terminase (7, 27). No specific role in terminase activity has yet been ascribed to UL33, but several possibilities have been proposed including (i) ensuring correct folding or assembly of the complex, (ii) regulating the functions of the other subunits, (iii) performing an essential enzymatic role per se, and (iv) ensuring correct localization of the terminase to sites of DNA packaging (7). However, recent immunofluorescence studies using mutants with defects in the individual terminase subunits suggest that UL33 is unlikely to be involved in this last function (15).In order to further investigate the role of UL33 in the cleavage-packaging process, we utilized transposon-mediated mutagenesis to introduce insertions of five codons throughout the UL33 ORF. We report the generation and characterization of 15 mutants in terms of their ability to support viral growth and DNA packaging and to interact with the terminase component UL28.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号