首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Predominant Functional Expression of Kv1.3 by Activated Microglia of the Hippocampus after Status epilepticus
Authors:Alexis Menteyne  Fran?oise Levavasseur  Etienne Audinat  Elena Avignone
Institution:1. Institut National de la Santé et de la Recherche Médicale, Unité 603, Paris, France.; 2. Université Paris Descartes, Paris, France.; 3. Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8154, Paris, France.;Tokyo Medical and Dental University, Japan
Abstract:

Background

Growing evidence indicates that the functional state of microglial cells differs according to the pathological conditions that trigger their activation. In particular, activated microglial cells can express sets of Kv subunits which sustain delayed rectifying potassium currents (Kdr) and modulate differently microglia proliferation and ability to release mediators. We recently reported that hippocampal microglia is in a particular activation state after a status epilepticus (SE) and the present study aimed at identifying which of the Kv channels are functionally expressed by microglia in this model.

Methodology/Principal Findings

SE was induced by systemic injection of kainate in CX3CR1eGFP/+ mice and whole cell recordings of fluorescent microglia were performed in acute hippocampal slices prepared 48 h after SE. Microglia expressed Kdr currents which were characterized by a potential of half-maximal activation near −25 mV, prominent steady-state and cumulative inactivations. Kdr currents were almost abolished by the broad spectrum antagonist 4-Aminopyridine (1 mM). In contrast, tetraethylammonium (TEA) at a concentration of 1 mM, known to block Kv3.1, Kv1.1 and 1.2 subunits, only weakly reduced Kdr currents. However, at a concentration of 5 mM which should also affect Kv1.3 and 1.6, TEA inhibited about 30% of the Kdr conductance. Alpha-dendrotoxin, which selectively inhibits Kv1.1, 1.2 and 1.6, reduced only weakly Kdr currents, indicating that channels formed by homomeric assemblies of these subunits are not important contributors of Kdr currents. Finally, agitoxin-2 and margatoxin strongly inhibited the current.

Conclusions/Significance

These results indicate that Kv1.3 containing channels predominantly determined Kdr currents in activated microglia after SE.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号