首页 | 本学科首页   官方微博 | 高级检索  
     


Changes in the photosynthetic apparatus during fusarium wilt of tomato
Authors:N. L. Pshibytko  L. A. Zenevich  L. F. Kabashnikova
Affiliation:(1) Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Akademicheskaya ul. 27, Minsk, 220072, Belarus
Abstract:Development of fusarium wilt was studied in 4-to 6-month-old tomato plants (Lycopersicon esculentum L., cv. Kunera). It was shown that the development of this disease could follow two patterns. When the wilt developed slowly (type I disease), the mycelium of Fusarium oxysporum fungus partly blocked the xylem and grew extensively within parenchyma. When the wilt developed fast (type II syndrome), the occlusion of both xylem and phloem was observed; the xylem sap circulation was suppressed and, consequently, tomato plant tissues were dehydrated. The development of type I and type II diseases led to suppression of photosynthetic activity in plants. In the case of slow wilt (type I), both light and dark stages of photosynthesis were damaged. This was evident from the decrease in the effectiveness of light harvesting and charge separations in the reaction centers of photosystem II (PSII), suppression of electron transport at the acceptor side of PSII, and the decrease in activity of Rubisco. In the case of fast wilt (type II), the Rubisco activity did not change, and photochemical activity of chloroplasts was suppressed to a smaller degree than during type I fusarium wilt. The decrease in the rate of linear electron transport in tomato leaves was mostly due to inhibition of electron flow at the acceptor side of PSII. The data obtained suggest that photosynthetic activity in tomato plants is suppressed by different mechanisms depending on the developmental pattern of fusarium wilt.
Keywords:Lycopersicon esculentum  Fusarium oxysporum  photosynthetic activity  photochemical activity of chloroplasts  PSII  Rubisco activity  water relations  xylem and phloem vascular bundles
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号