首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Platelet-activating factor and leukotriene biosynthesis in whole blood. A model for the study of transcellular arachidonate metabolism
Authors:A Fradin  J A Zirrolli  J Maclouf  L Vausbinder  P M Henson  R C Murphy
Institution:Department of Pharmacology, University of Colorado Health Sciences Center, Denver, 80262.
Abstract:As a model to perhaps better indicate potential in vivo tissue inflammatory events, the generation of leukotriene (LT)B4, 20-OH-LTB4, sulfidopeptide LT, and platelet-activating factor (PAF) from human whole blood stimulated with zymosan was compared with that produced by isolated human neutrophils suspended either in buffer or plasma. Several reports have shown that substantial LTB4 biosynthesis could be induced after addition of zymosan to whole blood, but little was known concerning the generation of other important lipid mediators, or the cellular source of these. We have shown that, in spite of some subject variation, the zymosan-induced production of 20-OH-LTB4, LTB4, and LTE4 reached maxima within 30 to 60 min with 1.1, 2.8, and 0.60 ng/10(6) neutrophils, respectively. These concentrations would be sufficient to induce significant biologic effects. Studies with isolated cell mixtures suggested that the neutrophil was the primary source of the lipid mediators or their precursors in this system, although a number of other cell types contributed as accessory cells to the final amounts and mix of mediators produced. The ratio of neutrophils to accessory cells in mixed cell experiments dramatically modified the metabolic pattern of leukotriene generation. The concentration of LTB4 was increased in the presence of RBC and that of LTE4 when platelets were present. These results suggested that cellular cooperation and transcellular biosynthesis played a key role in the overall production of eicosanoids such as LTB4 and LTC4. The concomitant synthesis of PAF in isolated cells and in whole blood was also determined as another member of the complex lipid mediator network. Maximal production of cell-associated PAF was observed within 30 min after the initiation of phagocytosis and reached levels of 3 to 5 ng PAF/10(6) neutrophils. When other cells were present in a coincubation system, the time course for production of PAF was not altered, but maximal concentration of PAF was lower, perhaps as a result of enhanced PAF metabolism. Study of eicosanoids and other lipid mediator production in mixed cell populations provides insight into those events occurring within tissues, where cross-cell signaling and transcellular biosynthesis may occur.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号