首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Synergistic and Hierarchical Adhesive and Topographic Guidance of BHK Cells
Authors:Stephen Britland  Hywel Morgan  Beata Wojiak-Stodart  Mathis Riehle  Adam Curtis  Chris Wilkinson
Institution:aDepartment of Electronics, University of Glasgow, Glasgow, G12 8QQ, United Kingdom;bCentre for Cell Engineering, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
Abstract:Guided cell movement is a fundamental process in development and regeneration. We have used microengineered culture substrates to study the interaction between model topographic and adhesive guidance cues in steering BHK cell orientation. Grooves 0.1, 0.5, 1.0, 3.0, and 6.0 μm deep together with pitch-matched aminosilane tracks 5, 12, 25, 50, and 100 μm wide were fabricated on fused silica substrates using photolithographic and dry-etching techniques. The cues were presented to the cells individually, simultaneously in parallel and orthogonally opposed. Cells aligned most strongly to 25-μm-wide adhesive tracks and to 5-μm-wide, 6-μm-deep grooves. Stress fibers and vinculin were found to align with the adhesive tracks and to the grooves and ridges. Cell alignment was profoundly enhanced on all surfaces that presented both cues in parallel. Cells were able to switch alignment from ridges to grooves, and vice versa, depending on the location of superimposed adhesive tracks. Cells aligned preferentially to adhesive tracks superimposed orthogonally over grooves of matched pitch, traversing numerous grooves and ridges. The strength of the cues was more closely matched on narrower 3- and 6-μm-deep gratings with cells showing evidence of alignment to both cues. Confocal fluorescence microscopy revealed two groups of mutually opposed f-actin stress fibers within the same cell, one oriented with the topographic cues and the other with the adhesive cues. However, the adhesive response was consistently dominant. We conclude that cells are able to detect and respond to multiple guidance cues simultaneously. The adhesive and topographic guidance cues modeled here were capable of interacting both synergistically and hierarchically to guide cell orientation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号