首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Transforming growth factor-beta inhibition of interleukin-1 activity involves down-regulation of interleukin-1 receptors on chondrocytes.
Authors:A K Harvey  P S Hrubey  S Chandrasekhar
Institution:Department of Rheumatology, Lilly Research Laboratories, Corporate Center, Indianapolis, Indiana 46285.
Abstract:Interleukin-1 (IL-1) plays an important role in cartilage destruction associated with inflammatory and degenerative arthritis because of its ability to induce matrix degrading enzymes. Previously, we have shown that the IL-1-induced chondrocyte protease activity was inhibited by transforming growth factor-beta (TGF-beta). In this paper, we show that TGF-beta inhibits the IL-1-induced synthesis of collagenase and stromelysin by reducing the steady-state mRNA levels in rabbit articular chondrocytes. We further demonstrate that TGF-beta-treated chondrocytes show reduced 125I-IL-1 binding that returns to a normal level when TGF-beta is removed from the culture medium. The inhibitory effect of TGF-beta is observed for both naturally occurring as well as fibroblast growth factor (FGF)-inducible binding sites (receptors). Scatchard analysis of receptor-ligand interactions demonstrate that the reduced binding is due to a reduction in the number of receptors for IL-1 and is not due to changes in affinity. Affinity cross-linking studies suggest that control chondrocytes contain two major cross-linked bands of Mr = 116 and 80 kDa and a minor band of Mr = 100 kDa. FGF-treated cells show enhanced levels of all the bands, plus an additional 200-kDa band. TGF-beta treatment of chondrocytes results in the reduction of all of these bands in both control as well as FGF-induced cells. These observations suggest that the ability of TGF-beta to down-regulate the IL-1 receptor may be a mechanism by which it exerts its effects in antagonizing the IL-1 activity on chondrocytes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号