Computational and experimental identification of C. elegans microRNAs |
| |
Authors: | Grad Yonatan Aach John Hayes Gabriel D Reinhart Brenda J Church George M Ruvkun Gary Kim John |
| |
Affiliation: | The Lipper Center for Computational Genetics and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. |
| |
Abstract: | MicroRNAs (miRNAs) constitute an extensive class of noncoding RNAs that are thought to regulate the expression of target genes via complementary base-pair interactions. To date, cloning has identified over 200 miRNAs from diverse eukaryotic organisms. Despite their success, such biochemical approaches are skewed toward identifying abundant miRNAs, unlike genome-wide, sequence-based computational predictions. We developed informatic methods to predict miRNAs in the C. elegans genome using sequence conservation and structural similarity to known miRNAs and generated 214 candidates. We confirmed the expression of four new miRNAs by Northern blotting and used a more sensitive PCR approach to verify the expression of ten additional candidates. Based on hypotheses underlying our computational methods, we estimate that the C. elegans genome may encode between 140 and 300 miRNAs and potentially many more. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|