首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Oxygen-dependent inactivation of ribulose 1,5-bisphosphate carboxylase/oxygenase in crude extracts of Rhodospirillum rubrum and establishment of a model inactivation system with purified enzyme.
Authors:L S Cook  H Im  and F R Tabita
Abstract:Ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBPC/O) was inactivated in crude extracts of Rhodospirillum rubrum under atmospheric levels of oxygen; no inactivation occurred under an atmosphere of argon. RuBP carboxylase activity did not decrease in dialyzed extracts, indicating that a dialyzable factor was required for inactivation. The inactivation was inhibited by catalase. Purified RuBPC/O is relatively oxygen stable, as no loss of activity was observed after 4 h under an oxygen atmosphere. The aerobic inactivation catalyzed by endogenous factors in crude extracts was mimicked by using a model system containing purified enzyme, ascorbate, and FeSO4 or FeCl3. Dithiothreitol was found to substitute for ascorbate in the model system. Preincubation of the purified enzyme with RuBP led to enhanced inactivation, whereas Mg2+ and HCO3- significantly protected against inactivation. Unlike the inactivation catalyzed by endogenous factors from extracts of R. rubrum, inactivation in the model system was not inhibited by catalase. It is proposed that ascorbate and iron, in the presence of oxygen, generate a reactive oxygen species which reacts with a residue at the activation site, rendering the enzyme inactive.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号