首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Monitoring of microbial community structure and succession in the biohydrogen production reactor by denaturing gradient gel electrophoresis (DGGE)
Authors:Defeng Xing  Nanqi Ren  Manli Gong  Jianzheng Li  Qiubo Li
Institution:(1) School of Municipal and Environmental Engineering, Harbin Institute of Technology, 150090 Harbin, China
Abstract:To study the structure of microbial communities in the biological hydrogen production reactor and determine the ecological function of hydrogen producing bacteria, anaerobic sludge was obtained from the continuous stirred tank reactor (CSTR) in different periods of time, and the diversity and dynamics of microbial communities were investigated by denaturing gradient gel electrophoresis (DGGE). The results of DGGE demonstrated that an obvious shift of microbial population happened from the beginning of star-up to the 28th day, and the ethanol type fermentation was established. After 28 days the structure of microbial community became stable, and the climax community was formed. Comparative analysis of 16S rDNA sequences from reamplifying and sequencing the prominent bands indicated that the dominant population belonged to low G+C Gram-positive bacteria (Clostridium sp. andEthanologenbacterium sp.), β-proteobacteria (Acidovorax sp.), γ-proteobacteria (Kluyvera sp.), Bacteroides (uncultured bacterium SJA-168), and Spirochaetes (uncultured eubacterium E1-K13), respectively. The hydrogen production rate increased obviously with the increase ofEthanologenbacterium sp.,Clostridium sp. and uncultured Spirochaetes after 21 days, meanwhile the succession of ethanol type fermentation was formed. Throughout the succession the microbial diversity increased however it decreased after 21 days. Some types ofClostridium sp.Acidovorax sp.,Kluyvera sp., and Bacteroides were dominant populations during all periods of time. These special populations were essential for the construction of climax community. Hydrogen production efficiency was dependent on both hydrogen producing bacteria and other populations. It implied that the cometabolism of microbial community played a great role of biohydrogen production in the reactors.
Keywords:biohydrogen production  microbial communities  16S rRNA  denaturing gradient gel electrophoresis (DGGE)  
本文献已被 CNKI 万方数据 SpringerLink 等数据库收录!
点击此处可从《中国科学:生命科学英文版》浏览原始摘要信息
点击此处可从《中国科学:生命科学英文版》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号