首页 | 本学科首页   官方微博 | 高级检索  
     


NMR studies of the backbone protons and secondary structure of pentapeptide and heptapeptide substrates bound to bovine heart protein kinase
Authors:P R Rosevear  D C Fry  A S Mildvan  M Doughty  C O'Brian  E T Kaiser
Abstract:The conformations of enzyme-bound pentapeptide (Arg-Arg-Ala-Ser-Leu) and heptapeptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) substrates of protein kinase have been studied by NMR in quaternary complexes of the type (Formula: see text). Paramagnetic effects of Mn2+ bound at the inhibitory site of the catalytic subunit on the longitudinal relaxation rates of backbone Ca protons, as well as on side-chain protons of the bound pentapeptide and heptapeptide substrates, have been used to determine Mn2+ to proton distances which range from 8.2 to 12.4 A. A combination of the paramagnetic probe-T1 method with the Redfield 2-1-4-1-2 pulse sequence for suppression of the water signal has been used to measure distances from Mn2+ to all of the backbone amide (NH) protons of the bound pentapeptide and heptapeptide substrates, which range from 6.8 to 11.1 A. Paramagnetic effects on the transverse relaxation rates yield rate constants for peptide exchange, indicating that the complexes studied by NMR dissociate rapidly enough to participate in catalysis. Model-building studies based on the Mn2+-proton distances, as well as on previously determined distances from Cr3+-AMPPCP to side-chain protons [Granot, J., Mildvan, A.S., Bramson, H. N., & Kaiser, E. T. (1981) Biochemistry 20, 602], rule out alpha-helical, beta-sheet, beta-bulge, and all possible beta-turn conformations within the bound pentapeptide and heptapeptide substrates. The distances are fit only by extended coil conformations for the bound peptide substrates with a minor difference between the pentapeptides and heptapeptides in the phi torsional angle at Arg3C alpha and in psi at Arg2C alpha. An extended coil conformation, which minimizes the number of interactions within the substrate, would facilitate enzyme-substrate interaction and could thereby contribute to the specificity of protein kinase.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号