首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Interactions of glyceraldehyde-3-phosphate dehydrogenase with G- and F-actin predicted by Brownian dynamics
Authors:Ouporov I V  Knull H R  Lowe S L  Thomasson K A
Institution:Department of Chemistry, University of North Dakota, Grand Forks, ND 58202-9024, USA.
Abstract:Brownian dynamics (BD) was used to simulate the binding of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to G- and F-actin. High-resolution three-dimensional models (X-ray and homology built) of the proteins were used in the simulations. The electrostatic potential about each protein was predicted by solving the linearized Poisson-Boltzmann equation for use in BD simulations. The BD simulations resulted in complexes of GAPDH with G- or F-actin involving positively charged surface patches on GAPDH (Lyses 24, 69, 110 and 114) and negatively charged residues of the N- and C-termini (Asps 1, 25 and 363 and Glus 2, 4, 224 and 364) of actin. The actin residues all belong to subdomain 1. Although the positively charged surface patches of GAPDH are not close enough to each other to enhance their electrostatic potential, occasionally two subunits of the GAPDH tetramer may simultaneously interact with two neighboring monomers of F-actin. These results are different from those of fructose-1,6-bisphosphate aldolase, where quaternary structure directly influenced binding by two subunits combining their electrostatic potentials (see previous study, Ouporov et al., 1999, Biophys. J. 76: 17-27). Instead, GAPDH uses its quaternary structure to span the distance between two different actin subunits so that it can interact with two different actin subunits simultaneously.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号