首页 | 本学科首页   官方微博 | 高级检索  
   检索      


In the mammalian eye type VI collagen tetramers form three morphologically different aggregates.
Authors:E Reale  S Groos  L Luciano  C Eckardt  U Eckardt
Institution:Zentrum Anatomie, Abteilung Zellbiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany. reale.enrico@mh-hannover.de
Abstract:The organization of the aggregates occurring in the stroma: (1) of the murine and human cornea after incubation in an ATP acidic solution; (2) of surgically excised epiretinal membranes (ERM); and (3) of the trabecular meshwork of monkey eyes was investigated morphologically and immunocytochemically on thin section electron microscopy. Morphology. The aggregates in the cornea appeared as cross-banded fibrils. The bands were uniformly electron dense (single banded form); they were separated from each other by interbands consisting of a bundle of filaments emerging in cross section as small areas of randomly assembled dot-like structures. In the ERM, most of the aggregates stood out as heteromorphic cross-banded bodies showing dense bands with electron denser borders (double banded form) and interbands composed of longitudinally oriented, parallel sheets or laminae of amorphous material enclosing thin, similarly oriented filaments. These extended, thinner and double in number (since interlacing with similar components of the opposite sheet), into the pale central zone of the dense band. The aggregates of the trabecular meshwork were heteromorphic, had uniformly dense bands (single banded form as in the cornea), but their interbands displayed longitudinal sheets (as the ERM aggregates). Immunocytochemistry revealed type VI collagen in the three eye aggregates with gold particles preferentially localized at the interbands. The specificity of the antibodies used was tested by Western blot analysis of type VI collagen samples extracted from human placenta and on homogenates of human cornea. In conclusion, the results indicate that the tetramers of type VI collagen may aggregate differently into structures with distinct supramolecular arrangements. These are illustrated in schematic drawings.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号