首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Different protective mechanisms of human embryonic and endometrium-derived mesenchymal stem cells under oxidative stress
Authors:A V Borodkina  A N Shatrova  N A Pugovkina  V I Zemelko  N N Nikolsky  E B Burova
Institution:1. Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
Abstract:Oxidative stress has been shown to cause either apoptosis or stress-induced premature senescence (SIPS) in different cell types. At present, it is generally accepted that stem cells have high resistance to oxidative stress; however, data reported by various authors are disputed. In this study, we investigated stress responses of human embryonic stem cells (hESC) and human mesenchymal stem cells (hMESC) derived from desquamated endometrium to hydrogen peroxide (H2O2). Cell viability was evaluated by MTT assay. LD50 were determined as 300–350, 370–400, and 600–700 μM for hESC, human embryonic fibroblasts, and hMESC, respectively. Thus, of the studied cell lines, hMESC exhibited the greatest resistance to increased H2O2 concentration. We found for the first time that a sublethal concentration of H2O2 induced premature senescence phenotype in hMESC, like in HEF, that was characterized by increased expression of cyclin-dependent kinase inhibitor p21Waf1/Cip1, an irreversible cell cycle arrest, the permanent loss of proliferative potential, cell hypertrophy, and the SA-β-Gal staining. Whereas the sublethal H2O2 concentration (200 μM) promoted in hMESC only SIPS, higher H2O2 concentrations also induced apoptosis in a small part of the cell population. On the contrary, in hESC, H2O2, regardless of the tested concentrations (from 50 to 500 μM), triggered apoptosis, which was the only pronounced response of these cells to oxidative damage. The obtained data demonstrate that stem cells of different origins under conditions of oxidative stress use different protective mechanisms: hESC rapidly eliminate damaged cells through apoptosis, whereas hMESC are subjected to premature senescence.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号