首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The kinesin-associated protein UNC-76 is required for axonal transport in the Drosophila nervous system
Authors:Gindhart Joseph G  Chen Jinyun  Faulkner Melissa  Gandhi Rita  Doerner Karl  Wisniewski Tiffany  Nandlestadt Aline
Institution:Biology Department, University of Massachusetts, Boston, Massachusetts 02125, USA. joseph.gindhart@umb.edu
Abstract:Kinesin-I is essential for the transport of membrane-bound organelles in neural and nonneural cells. However, the means by which kinesin interacts with its intracellular cargoes, and the means by which kinesin-cargo interactions are regulated in response to cellular transport requirements are not fully understood. The C terminus of the Drosophila kinesin heavy chain (KHC) was used in a two-hybrid screen of a Drosophila cDNA library to identify proteins that bind specifically to the kinesin tail domain. UNC-76 is an evolutionarily conserved cytosolic protein that binds to the tail domain of KHC in two-hybrid and copurification assays, indicating that kinesin and UNC-76 form a stable complex in vivo. Loss of Drosophila Unc-76 function results in locomotion and axonal transport defects reminiscent of the phenotypes observed in kinesin mutants, suggesting that UNC-76 is required for kinesin-dependent axonal transport. Unc-76 exhibits dosage-sensitive genetic relationships with Khc and Kinesin light chain mutations, further supporting the hypothesis that UNC-76 and kinesin-I work in a common transport pathway. Given the interaction of FEZ1, the mammalian homolog of UNC-76, with protein kinase Czeta, and the role of FEZ1 in axon outgrowth, we propose that UNC-76 helps integrate kinesin activity in response to transport requirements in axons.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号