首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Transgenic potato overproducing L-ascorbic acid resisted an increase in methylglyoxal under salinity stress via maintaining higher reduced glutathione level and glyoxalase enzyme activity
Authors:Upadhyaya Chandrama Prakash  Venkatesh Jelli  Gururani Mayank Anand  Asnin Leonid  Sharma Kavita  Ajappala Hemavathi  Park Se Won
Institution:(1) Department of Molecular Biotechnology, Konkuk University, 1, Hwayang-dong, Gwangjin-gu, Seoul, Korea Republic;(2) Present address: Department of Botany, Guru Ghasidas Central University, Bilaspur, 495009, India;
Abstract:Salt-tolerance was studied in transgenic potato. It was conferred by overexpression of ascorbate pathway enzyme (d-galacturonic acid reductase, GalUR). As genetic engineering of the GalUR gene in potato enhances its ascorbic acid content (l-AsA), and subsequently plants suffered minimal oxidative stress-induced damage, we now report on the comprehensive aptness of this engineering approach for enhanced salt tolerance in transgenic potato (Solanum tuberosum L. cv. Taedong Valley). Potatoes overexpressing GalUR grew and tuberized in continuous presence of 200 mM of NaCl. The transgenic plants maintained a higher reduced to oxidized glutathione (GSH:GSSG) ratio together with enhanced activity of glutathione dependent antioxidative and glyoxalase enzymes under salinity stress. The transgenics resisted an increase in methylglyoxal that increased radically in untransformed control plants under salinity stress. This is the first report of genetic engineering of ascorbate pathway gene in maintaining higher level of GSH homeostasis along with higher glyoxalase activity inhibiting the accumulation in methylglyoxal (a potent cytotoxic compound) under salt stress. These results suggested the engineering of ascorbate pathway enzymes as a major step towards developing salinity tolerant crop plants.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号