首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mitochondrial Complex III-generated Oxidants Activate ASK1 and JNK to Induce Alveolar Epithelial Cell Death following Exposure to Particulate Matter Air Pollution
Authors:Saul Soberanes  Daniela Urich  Christina M Baker  Zach Burgess  Sergio E Chiarella  Eric L Bell  Andrew J Ghio  Andrea De Vizcaya-Ruiz  Jing Liu  Karen M Ridge  David W Kamp  Navdeep S Chandel  Paul T Schumacker  G?khan M Mutlu  G R Scott Budinger
Institution:Divisions of ?Pulmonary and Critical Care Medicine and Pediatrics, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, the §United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, and the Sección Externa de Toxicología, Centro de Investigación y de Estudios Avanzados-IPN, México D.F., México 07360
Abstract:We have previously reported that airborne particulate matter air pollution (PM) activates the intrinsic apoptotic pathway in alveolar epithelial cells through a pathway that requires the mitochondrial generation of reactive oxygen species (ROS) and the activation of p53. We sought to examine the source of mitochondrial oxidant production and the molecular links between ROS generation and the activation of p53 in response to PM exposure. Using a mitochondrially targeted ratiometric sensor (Ro-GFP) in cells lacking mitochondrial DNA (ρ0 cells) and cells stably expressing a small hairpin RNA directed against the Rieske iron-sulfur protein, we show that site III of the mitochondrial electron transport chain is primarily responsible for fine PM (PM2.5)-induced oxidant production. In alveolar epithelial cells, the overexpression of SOD1 prevented the PM2.5-induced ROS generation from the mitochondria and prevented cell death. Infection of mice with an adenovirus encoding SOD1 prevented the PM2.5-induced death of alveolar epithelial cells and the associated increase in alveolar-capillary permeability. Treatment with PM2.5 resulted in the ROS-mediated activation of the oxidant-sensitive kinase ASK1 and its downstream kinase JNK. Murine embryonic fibroblasts from ASK1 knock-out mice, alveolar epithelial cells transfected with dominant negative constructs against ASK1, and pharmacologic inhibition of JNK with SP600125 (25 μm) prevented the PM2.5-induced phosphorylation of p53 and cell death. We conclude that particulate matter air pollution induces the generation of ROS primarily from site III of the mitochondrial electron transport chain and that these ROS activate the intrinsic apoptotic pathway through ASK1, JNK, and p53.Epidemiologic studies have consistently demonstrated a strong link between the daily levels of particulate matter air pollution <2.5 μm in diameter (PM2.5)3 and PM <10 μmin diameter (PM10) and cardiopulmonary morbidity and mortality (13). In humans, exposure to PM10 has been associated with an increase in mortality from ischemic cardiovascular events including stroke and myocardial infarction, an acceleration in the age-related decline in lung function in normal adults, impairment in normal lung development in children, exacerbations of asthma in children and adults, accelerated atherosclerosis in women, increased rates of lung cancer, and the development of myocardial ischemia in men with stable coronary artery disease (410). The intracellular generation of reactive oxygen species (ROS) has emerged as a common mechanism by which particulates might initiate signaling pathways that end in these diverse pathologic conditions (11). We have reported that the PM-induced generation of ROS requires a functional electron transport chain, suggesting that PM might induce the inadvertent transfer of electrons from one or more sites in the electron transport chain to molecular oxygen (12).One of the mechanisms by which exposure to PM can contribute to alveolar epithelial dysfunction, lung injury and inflammation, and lung cancer is by activating the intrinsic apoptotic pathway to induce cell death (11, 12). We have reported that this process requires the activation of p53; however, the molecular events linking the generation of ROS by the mitochondrial electron transport chain with the activation of p53 are not known (12). In this paper, we show that exposure of alveolar epithelial cells to PM2.5 induces the generation of ROS from site III of the mitochondrial electron transport chain. These mitochondrially derived oxidants activate the mitogen-activated signaling kinase kinase kinase (MAPKKK) apoptosis signaling kinase 1 (ASK1), which activates the c-Jun N-terminal kinase (JNK) signaling pathway. The activation of JNK is required for the phosphorylation of p53 and the subsequent cell death. Inhibition of mitochondrial oxidant production in mouse lungs prevents PM2.5-induced cell death and the associated PM2.5-induced increase in the permeability of the alveolar-capillary barrier.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号