首页 | 本学科首页   官方微博 | 高级检索  
   检索      


MG53 Regulates Membrane Budding and Exocytosis in Muscle Cells
Authors:Chuanxi Cai  Haruko Masumiya  Noah Weisleder  Zui Pan  Miyuki Nishi  Shinji Komazaki  Hiroshi Takeshima  and Jianjie Ma
Abstract:Membrane recycling and remodeling contribute to multiple cellular functions, including cell fusion events during myogenesis. We have identified a tripartite motif (TRIM72) family member protein named MG53 and defined its role in mediating the dynamic process of membrane fusion and exocytosis in striated muscle. MG53 is a muscle-specific protein that contains a TRIM motif at the amino terminus and a SPRY motif at the carboxyl terminus. Live cell imaging of green fluorescent protein-MG53 fusion construct in cultured myoblasts showed that although MG53 contains no transmembrane segment it is tightly associated with intracellular vesicles and sarcolemmal membrane. RNA interference-mediated knockdown of MG53 expression impeded myoblast differentiation, whereas overexpression of MG53 enhanced vesicle trafficking to and budding from sarcolemmal membrane. Co-expression studies indicated that MG53 activity is regulated by a functional interaction with caveolin-3. Our data reveal a new function for TRIM family proteins in regulating membrane trafficking and fusion in striated muscles.When myoblasts exit the cell cycle during myogenesis, dramatic changes in membrane organization occur as myoblast fusion allows the formation of multinucleated muscle fibers. In addition to cell fusion events, differentiation of myotubes involves establishment of specialized membrane structures (1, 2). The transverse tubular invagination of sarcolemmal membrane and the intracellular membrane network known as the sarcoplasmic reticulum are two highly organized membrane architectures in cardiac and skeletal muscle. Establishment of these intricate membrane compartments requires extensive remodeling of the immature myoblast membranes. Dynamic membrane remodeling also contributes to many physiologic processes in mature muscle, including Ca2+ signaling, trafficking of glucose transporter (GLUT4), and other membrane internalization events involving caveolae structures (3-6). Although defects in membrane integrity have been linked to various forms of muscular dystrophy (7, 8), the molecular machinery regulating these specific membrane recycling and remodeling events in striated muscle is not well defined.The large tripartite motif (TRIM)5 family of proteins is involved in numerous cellular functions in a wide variety of cell types. Members of this protein family contain signature motifs that include a RING finger, a zinc binding moiety (B-box), and a coiled coil structure (RBCC), which invariably comprise the amino-terminal domain of TRIM family members (9). The carboxyl-terminal sequence of TRIM proteins is variable; in some cases a subfamily of TRIM proteins contains a SPRY domain, a sequence first observed in the ryanodine receptor Ca2+ channel in the sarcoplasmic reticulum membrane of excitable cells (10). Extensive studies have revealed that protein-protein interactions in the cytosol mediate the defined functions of TRIM proteins. For example, the ubiquitin E3 ligase enzymatic activity of several TRIM family members requires the B-box motif (11, 12). Recent studies have also indicated a role for TRIM proteins in defense against events involving membrane penetration, such as protection against infection by various viruses, including human immunodeficiency virus (13-15). Although most of the studies concentrate on the cytosolic action of TRIM, limited reports have investigated the role of TRIM proteins in membrane signaling or recycling.We have previously established an immunoproteomics approach that allows definition of novel components involved in myogenesis, Ca2+ signaling, and maintenance of membrane integrity in striated muscle (16). Using this approach, we have shown that junctophilin is a structural protein that establishes functional communication between sarcoplasmic reticulum and transverse tubule membranes at triad and dyad junctions in striated muscle (17-19). Further studies identified mitsugumin 29, a synaptophysin-related protein that is essential for biogenesis of triad membrane structures and Ca2+ signaling in skeletal muscle (20, 21). Screening of this immunoproteomics library led to the recent identification of MG53, a muscle-specific TRIM family protein (22). Domain homology analysis revealed that MG53 contains the prototypical RBCC motifs plus a SPRY domain at the carboxyl terminus. Genetic knock-out and functional studies reveal that MG53 nucleates the assembly of the sarcolemmal membrane repair machinery to restore cellular integrity following acute damage to the muscle fiber (22).Here we present evidence illustrating that MG53, in contrast to other known TRIM proteins, can localize to intracellular vesicles and the sarcolemmal membrane. A functional interaction between MG53 and caveolin-3, another muscle-specific protein, plays an essential role in regulating the dynamic process of membrane budding and exocytosis in skeletal muscle.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号