首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Substrate Specificity of the Oxidoreductase ERp57 Is Determined Primarily by Its Interaction with Calnexin and Calreticulin
Authors:Catherine E Jessop  Timothy J Tavender  Rachel H Watkins  Joseph E Chambers  and Neil J Bulleid
Institution:Faculty of Life Sciences, The Michael Smith Building, University of Manchester, Manchester, M13 9PT, United Kingdom
Abstract:The formation of disulfides within proteins entering the secretory pathway is catalyzed by the protein disulfide isomerase family of endoplasmic reticulum localized oxidoreductases. One such enzyme, ERp57, is thought to catalyze the isomerization of non-native disulfide bonds formed in glycoproteins with unstructured disulfide-rich domains. Here we investigated the mechanism underlying ERp57 specificity toward glycoprotein substrates and the interdependence of ERp57 and the calnexin cycle for their correct folding. Our results clearly show that ERp57 must be physically associated with the calnexin cycle to catalyze isomerization reactions with most of its substrates. In addition, some glycoproteins only require ERp57 for correct disulfide formation if they enter the calnexin cycle. Hence, the specificity of ER oxidoreductases is not only determined by the physical association of enzyme and substrate but also by accessory factors, such as calnexin and calreticulin in the case of ERp57. These conclusions suggest that the calnexin cycle has evolved with a specialized oxidoreductase to facilitate native disulfide formation in complex glycoproteins.The ability to form disulfide bonds within proteins entering the secretory pathway is essential for cell survival and occurs within the endoplasmic reticulum (ER).3 For proteins with few disulfides, the process can be catalyzed by oxidation of cysteine residues to form the correct, native disulfide; however, for proteins with several disulfides, an isomerization reaction is also required to correct non-native disulfides formed following oxidation (1). Both these reactions are catalyzed by a group of ER-resident proteins that belong to the protein disulfide isomerase (PDI) family, which comprises over 17 members (2). It is well established that PDI and several other family members are able to catalyze the formation and isomerization of disulfides in vitro, although the exact function of each of the family members in vivo is unknown. It is still an open question as to whether they all catalyze similar reactions and have distinct substrate specificities or whether they have distinct enzymatic functions related to the breaking and formation of disulfides.For one member of the PDI family, the function and substrate specificity is a little clearer. ERp57 has been shown previously to interact specifically with glycoproteins during their folding (3). The enzyme is physically associated with either calnexin or calreticulin (4) and is therefore ideally placed to catalyze correct disulfide formation within proteins entering the calnexin/calreticulin cycle (referred to subsequently just as the calnexin cycle). In addition, the ability of ERp57 to catalyze the refolding of substrates in vitro is greatly enhanced if the substrate is bound to calnexin (5). Recently, substrates for the reduction or isomerization reaction catalyzed by ERp57 have been identified by trapping mixed disulfides between enzyme and substrate (6). Strikingly, there was an overrepresentation of substrate proteins with cysteine-rich domains containing little secondary structure, suggesting that the main function of ERp57 is in the isomerization of non-native disulfides. ERp57 has also been shown to function independently from the calnexin cycle. It is a component of the MHC class I loading complex where it forms a disulfide-linked complex with tapasin and is thought to either stabilize the complex or facilitate correct assembly of class I molecules (7, 8). Recently, ERp57 has been demonstrated to isomerize interchain disulfides in the major capsid protein, VP1, of simian virus 40 (9). The ability to dissociate VP1 pentamers by ERp57 does not require the substrate to interact with the calnexin cycle. Hence, it is still unclear how ERp57 recognizes its substrates, and in particular, whether this recognition is solely determined by an interaction with the calnexin cycle.The recognition of substrates by PDI is somewhat clearer in that one particular domain within the protein (the b′ domain) has been shown to be primarily responsible for substrate recognition and peptide binding (10). The corresponding domain within ERp57 has been shown to be responsible for interaction with the calnexin cycle (11), suggesting that for ERp57, substrate recognition must occur outside this domain or is determined solely by substrate interaction with calnexin via its oligosaccharide side chain. Hence, the aim of our study was to evaluate the necessity of the calnexin cycle both for ERp57 to recognize its substrates and for correct folding of glycoproteins. ERp57 was found to be required for the efficient folding of one substrate, influenza virus hemagglutinin (HA), but only when it entered the calnexin cycle. HA did not require ERp57 to fold if it was blocked from entering the calnexin cycle. In contrast, β1-integrin does not fold efficiently either if ERp57 was depleted or if ERp57 is blocked from entering the calnexin cycle (6). Although ERp57 may be dispensable for the folding of some glycoproteins, the interaction with calnexin commits them to an ERp57-dependent fate. We also found that the majority of ERp57 substrates need to enter the calnexin cycle to be acted upon by the enzyme, demonstrating that substrate specificity is primarily dependent upon substrate entry into the calnexin cycle.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号